
Polyspace® Code Prover™

Reference

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Code Prover™ Reference
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online Only Revised for Version 9.0 (Release 2013b)
March 2014 Online Only Revised for Version 9.1 (Release 2014a)
October 2014 Online Only Revised for Version 9.2 (Release 2014b)
March 2015 Online Only Revised for Version 9.3 (Release 2015a)
September 2015 Online Only Revised for Version 9.4 (Release 2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Option Descriptions
1

Target operating system (C/C++) . 1-4
Settings . 1-4
Dependencies . 1-5
Command-Line Information . 1-5

Target processor type (C/C++) . 1-6
Settings: . 1-6
Tips . 1-7
Command-Line Information . 1-7

Generic target options (C/C++) . 1-8
Command-Line Options . 1-8

Dialect (C) . 1-13
Settings . 1-13
Dependency . 1-14
Limitations . 1-14
Command-Line Information . 1-15

Respect C90 standard (C) . 1-17
Settings . 1-17
Dependencies . 1-17
Command-Line Information . 1-17

Sfr type support (C) . 1-18
Settings . 1-18
Dependency . 1-18
Command-Line Information . 1-18

Division round down (C/C++) . 1-19
Settings . 1-19
Command-Line Information . 1-19

iv Contents

Enum type definition (C/C++) . 1-20
Settings . 1-20
Command-Line Information . 1-20

Signed right shift (C/C++) . 1-21
Settings . 1-21
Limitation . 1-21
Command-Line Information . 1-22

Preprocessor definitions (C/C++) . 1-23
Settings . 1-23
Tips . 1-23
Command-Line Information . 1-24

Disabled preprocessor definitions (C/C++) 1-25
Settings . 1-25
Command-Line Information . 1-25

Code from DOS or Windows file system (C/C++) 1-26
Settings . 1-26
Command-Line Information . 1-26

Command/script to apply to preprocessed files (C/C++) . . . 1-27
Settings . 1-27
Tips . 1-27
Command-Line Information . 1-28

Continue with compile error (C/C++) 1-30
Settings . 1-30
Command-Line Information . 1-30

Include (C/C++) . 1-31
Settings . 1-31
Tips . 1-31
Command-Line Information . 1-31

Include folders (C/C++) . 1-32
Settings . 1-32
Command-Line Information . 1-32

Constraint setup (C/C++) . 1-33
Settings . 1-33
Command-Line Information . 1-33

v

Ignore default initialization of global variables (C/C++) . . . 1-35
Settings . 1-35
Tips . 1-35
Command-Line Information . 1-35

No automatic stubbing (C/C++) . 1-37
Settings . 1-37
Tips . 1-37
Command-Line Information . 1-37

Functions to stub (C) . 1-39
Settings . 1-39
Tips . 1-39
Command-Line Information . 1-39

Enable automatic concurrency detection (C/C++) 1-41
Settings . 1-41
Limitations . 1-42
Command-Line Information . 1-43

Configure multitasking manually (C/C++) 1-44
Settings . 1-44
Dependencies . 1-44
Command-Line Information . 1-44

Entry points (C/C++) . 1-46
Settings . 1-46
Dependencies . 1-46
Tips . 1-46
Command-Line Information . 1-47

Critical section details (C/C++) . 1-48
Settings . 1-48
Dependencies . 1-48
Tips . 1-48
Command-Line Information . 1-48

Temporally exclusive tasks (C/C++) . 1-50
Settings . 1-50
Dependencies . 1-50
Command-Line Information . 1-50

vi Contents

Check MISRA C:2004 . 1-52
Settings . 1-52
Tips . 1-53
Command-Line Information . 1-53

Check MISRA AC AGC . 1-54
Settings . 1-54
Tips . 1-55
Command-Line Information . 1-55

Check MISRA C:2012 . 1-56
Settings . 1-56
Tips . 1-57
Command-Line Information . 1-57

Use generated code requirements (C) 1-58
Settings . 1-58
Dependency . 1-59
Command-Line Information . 1-59

Check custom rules (C/C++) . 1-60
Settings . 1-60
Command-Line Information . 1-62

Files and folders to ignore (C) . 1-63
Settings . 1-63
Dependencies . 1-63
Command-Line Information . 1-63

Effective boolean types (C) . 1-65
Settings . 1-66
Dependencies . 1-66
Command-Line Information . 1-66

Allowed pragmas (C) . 1-68
Settings . 1-68
Dependencies . 1-68
Command-Line Information . 1-68

Verify whole application (C/C++) . 1-69
Settings . 1-69
Command-Line Information . 1-69

vii

Verify module (C) . 1-70
Settings . 1-70
Command-Line Information . 1-70

Variables to initialize (C) . 1-72
Settings . 1-72
Dependencies . 1-72
Command-Line Information . 1-72

Initialization functions (C) . 1-74
Settings . 1-74
Tips . 1-74
Command-Line Information . 1-74
Dependencies . 1-74

Functions to call (C) . 1-75
Settings . 1-75
Dependencies . 1-75
Tips . 1-75
Command-Line Information . 1-76

Verify files independently (C/C++) . 1-77
Settings . 1-77
Dependencies . 1-77
Tips . 1-77
Command-Line Information . 1-77

Common source files (C/C++) . 1-79
Settings . 1-79
Dependencies . 1-79
Command-Line Information . 1-79

Parameters (C) . 1-80
Settings . 1-80
Command-Line Information . 1-80

Inputs (C) . 1-82
Settings . 1-82
Command-Line Information . 1-82

Initialization functions (C) . 1-84
Settings . 1-84
Command-Line Information . 1-84

viii Contents

Step functions (C) . 1-85
Settings . 1-85
Tips . 1-85
Command-Line Information . 1-86

Termination functions (C) . 1-87
Settings . 1-87
Command-Line Information . 1-87

Respect types in fields (C/C++) . 1-88
Settings . 1-88
Command-Line Information . 1-89

Respect types in global variables (C/C++) 1-90
Settings . 1-90
Command-Line Information . 1-90

Ignore float rounding (C/C++) . 1-92
Settings . 1-92
Command-Line Information . 1-92

Green absolute address checks (C/C++) 1-94
Settings . 1-94
Tips . 1-94
Command-Line Information . 1-94

Ignore overflowing computations on constants (C/C++) . . . 1-95
Settings . 1-95
Tips . 1-95
Command-Line Information . 1-95

Allow negative operand for left shifts (C/C++) 1-96
Settings . 1-96
Command-Line Information . 1-96

Detect overflows (C/C++) . 1-97
Settings . 1-97
Tips . 1-97
Command-Line Information . 1-98

Detect Overflows in Buffer Size Computation 1-99

ix

Overflow computation mode (C/C++) 1-101
Settings . 1-101
Command-Line Information . 1-102

Disable checks for non-initialization (C/C++) 1-103
Settings . 1-103
Tips . 1-103
Command-Line Information . 1-104

Enable pointer arithmetic across fields (C) 1-105
Settings . 1-105
Tips . 1-105
Command-Line Information . 1-105

Allow incomplete or partial allocation of structures (C) . . 1-107
Settings . 1-107
Tips . 1-108
Command-Line Information . 1-108

Permissive function pointer calls (C) 1-110
Settings . 1-110
Tips . 1-110
Command-Line Information . 1-110

Detect uncalled functions (C/C++) . 1-111
Settings . 1-111
Command-Line Information . 1-111

Precision level (C/C++) . 1-113
Settings . 1-113
Tips . 1-113
Command-Line Information . 1-113

Verification level (C) . 1-115
Settings . 1-115
Tips . 1-115
Dependency . 1-117
Command-Line Information . 1-117

Verification time limit (C/C++) . 1-118
Settings . 1-118
Command-Line Information . 1-118

x Contents

Retype variables of pointer types (C) 1-119
Settings . 1-119
Command-Line Information . 1-119

Retype symbols of integer types (C) 1-120
Settings . 1-120
Dependencies . 1-120
Tips . 1-121
Command-Line Information . 1-121

Sensitivity context (C/C++) . 1-122
Settings . 1-122
Command-Line Information . 1-122

Improve precision of interprocedural analysis (C/C++) . . 1-124
Settings . 1-124
Tips . 1-124
Command-Line Information . 1-124

Specific precision (C) . 1-125
Settings . 1-125
Command-Line Information . 1-125

Optimize large static initializers (C/C++) 1-126
Settings . 1-126
Command-Line Information . 1-126

Inline (C/C++) . 1-127
Settings . 1-127
Tips . 1-127
Command-Line Information . 1-128

Depth of verification inside structures (C/C++) 1-129
Settings . 1-129
Command-Line Information . 1-129

Generate report (C/C++) . 1-130
Settings . 1-130
Tips . 1-130
Command-Line Information . 1-130

Report template (C/C++) . 1-132
Settings . 1-132

xi

Dependencies . 1-135
Command-Line Information . 1-135

Output format (C/C++) . 1-136
Settings . 1-136
Tips . 1-136
Dependencies . 1-136
Command-Line Information . 1-136

Batch (C/C++) . 1-138
Settings . 1-138
Dependency . 1-139
Command-Line Information . 1-139

Add to results repository (C/C++) . 1-140
Settings . 1-140
Dependency . 1-140
Command-Line Information . 1-140

Calculate Code Metrics (C/C++) . 1-141
Settings . 1-141
Command-Line Information . 1-141

Command/script to apply after the end of the code
verification (C/C++) . 1-142

Settings . 1-142
Command-Line Information . 1-142

Automatic Orange Tester (C) . 1-143
Settings . 1-143
Tips . 1-143
Command-Line Information . 1-144

Number of automatic tests (C) . 1-145
Settings . 1-145
Dependencies . 1-145
Command-Line Information . 1-145

Maximum loop iterations (C) . 1-146
Settings . 1-146
Dependencies . 1-146
Command-Line Information . 1-146

xii Contents

Maximum test time (C) . 1-147
Settings . 1-147
Dependencies . 1-147
Command-Line Information . 1-147

Other (C) . 1-148
-extra-flags . 1-148
-c-extra-flags . 1-148
-cfe-extra-flags . 1-148
-il-extra-flags . 1-149

Option Descriptions specific to C++ Code
2

Dialect (C++) . 2-3
Settings . 2-3
Dependencies . 2-4
Limitations . 2-5
Command-Line Information . 2-7

C++11 Extensions (C++) . 2-8
Settings . 2-8
Dependencies . 2-8
Command-Line Information . 2-8

Block char16/32_t types (C++) . 2-9
Settings . 2-9
Dependencies . 2-9
Command-Line Information . 2-9

Pack alignment value (C++) . 2-10
Settings . 2-10
Dependencies . 2-10
Command-Line Information . 2-10

Ignore pragma pack directives (C++) 2-11
Settings . 2-11
Dependencies . 2-11
Command-Line Information . 2-11

xiii

Import folder (C++) . 2-12
Settings . 2-12
Dependencies . 2-12
Command-Line Information . 2-12

Management of scope of 'for loop' variable index (C++) . . . 2-13
Settings . 2-13
Command-Line Information . 2-13

Management of wchar_t (C++) . 2-14
Settings . 2-14
Command-Line Information . 2-14

Set wchar_t to unsigned long (C++) 2-15
Settings . 2-15
Command-Line Information . 2-15

Set size_t to unsigned long (C++) . 2-16
Settings . 2-16
Command-Line Information . 2-16

Ignore link errors (C++) . 2-17
Settings . 2-17
Command-Line Information . 2-17

Check MISRA C++ rules . 2-18
Settings . 2-18
Command-Line Information . 2-19

Check JSF C++ rules . 2-20
Settings . 2-20
Tips . 2-21
Command-Line Information . 2-21

Files and folders to ignore (C++) . 2-22
Settings . 2-22
Dependencies . 2-22
Command-Line Information . 2-22

Main entry point (C++) . 2-24
Settings . 2-24
Dependencies . 2-24
Command-Line Information . 2-24

xiv Contents

Verify module (C++) . 2-26
Settings . 2-26
Command-Line Information . 2-26

Class (C++) . 2-28
Settings . 2-28
Dependencies . 2-28
Tips . 2-28
Command-Line Information . 2-28

Functions to call within the specified classes (C++) 2-30
Settings . 2-30
Dependencies . 2-31
Command-Line Information . 2-31

Analyze class contents only (C++) . 2-32
Settings . 2-32
Dependencies . 2-32
Tips . 2-32
Command-Line Information . 2-32

Skip member initialization check (C++) 2-34
Settings . 2-34
Dependencies . 2-34
Command-Line Information . 2-34

Functions to call (C++) . 2-35
Settings . 2-35
Dependencies . 2-35
Tips . 2-35
Command-Line Information . 2-36

Variables to initialize (C++) . 2-37
Settings . 2-37
Dependencies . 2-37
Command-Line Information . 2-37

Initialization functions (C++) . 2-39
Settings . 2-39
Command-Line Information . 2-39
Dependencies . 2-39

xv

Parameters (C++) . 2-41
Settings . 2-41
Command-Line Information . 2-41

Inputs (C++) . 2-43
Settings . 2-43
Command-Line Information . 2-43

Initialization functions (C++) . 2-45
Settings . 2-45
Command-Line Information . 2-45

Step functions (C++) . 2-46
Settings . 2-46
Tips . 2-46
Command-Line Information . 2-46

Termination functions (C++) . 2-48
Settings . 2-48
Tips . 2-48
Command-Line Information . 2-48

No STL stubs (C++) . 2-50
Settings . 2-50
Tips . 2-50
Command-Line Information . 2-50

Functions to stub (C++) . 2-51
Settings . 2-51
Tips . 2-51
Command-Line Information . 2-52

Tuning Precision and Scaling Parameters 2-53
Precision versus Time of Verification 2-53
Precision versus Code Size . 2-53

Verification level (C++) . 2-55
Settings . 2-55
Tips . 2-55
Dependency . 2-56
Command-Line Information . 2-56

xvi Contents

Other (C++) . 2-57
-extra-flags . 2-57
-cpp-extra-flags . 2-57
-il-extra-flags . 2-57

Polyspace Analysis Options — Command Line Only
3

Check Reference
4

Approximations Used During Verification
5

Why Polyspace Verification Uses Approximations 5-2
What is Static Verification . 5-2
Exhaustiveness . 5-3

Polyspace Assumptions About Certain Code Constructs . . . 5-4
Variable Ranges . 5-4
Initialization of Global Variables . 5-5
Volatile Variables . 5-7
Structures with Volatile Fields . 5-9
Absolute Addresses . 5-9
External Variables . 5-10
Definitions and Declarations . 5-10
Types Promotion . 5-11
Using memset and memcpy . 5-14
Shared Variables . 5-18
Standard Library Float Routines . 5-19
Unions . 5-19
Constant Pointer . 5-20
Variable Cast as Void Pointer . 5-21
Assembly Code . 5-21

xvii

Limitations of Polyspace Verification 5-27

Examples
6

Scripts for Command-Line Verification 6-2
Simple C Example . 6-2
Apache Example . 6-2
cxref Example . 6-3
T31 Example . 6-3
Dishwasher1 Example . 6-3
Satellite Example . 6-4

Functions
7

MISRA C 2012
8

Code Metrics
9

Custom Coding Rules
10

Group 1: Files . 10-2

Group 2: Preprocessing . 10-3

xviii Contents

Group 3: Type definitions . 10-4

Group 4: Structures . 10-5

Group 5: Classes (C++) . 10-6

Group 6: Enumerations . 10-7

Group 7: Functions . 10-8

Group 8: Constants . 10-9

Group 9: Variables . 10-10

Group 10: Name spaces (C++) . 10-11

Group 11: Class templates (C++) . 10-12

Group 12: Function templates (C++) 10-13

Global Variables
11

1

Option Descriptions

• “Target operating system (C/C++)” on page 1-4
• “Target processor type (C/C++)” on page 1-6
• “Generic target options (C/C++)” on page 1-8
• “Dialect (C)” on page 1-13
• “Respect C90 standard (C)” on page 1-17
• “Sfr type support (C)” on page 1-18
• “Division round down (C/C++)” on page 1-19
• “Enum type definition (C/C++)” on page 1-20
• “Signed right shift (C/C++)” on page 1-21
• “Preprocessor definitions (C/C++)” on page 1-23
• “Disabled preprocessor definitions (C/C++)” on page 1-25
• “Code from DOS or Windows file system (C/C++)” on page 1-26
• “Command/script to apply to preprocessed files (C/C++)” on page 1-27
• “Continue with compile error (C/C++)” on page 1-30
• “Include (C/C++)” on page 1-31
• “Include folders (C/C++)” on page 1-32
• “Constraint setup (C/C++)” on page 1-33
• “Ignore default initialization of global variables (C/C++)” on page 1-35
• “No automatic stubbing (C/C++)” on page 1-37
• “Functions to stub (C)” on page 1-39
• “Enable automatic concurrency detection (C/C++)” on page 1-41
• “Configure multitasking manually (C/C++)” on page 1-44
• “Entry points (C/C++)” on page 1-46
• “Critical section details (C/C++)” on page 1-48
• “Temporally exclusive tasks (C/C++)” on page 1-50

1 Option Descriptions

1-2

• “Check MISRA C:2004” on page 1-52
• “Check MISRA AC AGC” on page 1-54
• “Check MISRA C:2012” on page 1-56
• “Use generated code requirements (C)” on page 1-58
• “Check custom rules (C/C++)” on page 1-60
• “Files and folders to ignore (C)” on page 1-63
• “Effective boolean types (C)” on page 1-65
• “Allowed pragmas (C)” on page 1-68
• “Verify whole application (C/C++)” on page 1-69
• “Verify module (C)” on page 1-70
• “Variables to initialize (C)” on page 1-72
• “Initialization functions (C)” on page 1-74
• “Functions to call (C)” on page 1-75
• “Verify files independently (C/C++)” on page 1-77
• “Common source files (C/C++)” on page 1-79
• “Parameters (C)” on page 1-80
• “Inputs (C)” on page 1-82
• “Initialization functions (C)” on page 1-84
• “Step functions (C)” on page 1-85
• “Termination functions (C)” on page 1-87
• “Respect types in fields (C/C++)” on page 1-88
• “Respect types in global variables (C/C++)” on page 1-90
• “Ignore float rounding (C/C++)” on page 1-92
• “Green absolute address checks (C/C++)” on page 1-94
• “Ignore overflowing computations on constants (C/C++)” on page 1-95
• “Allow negative operand for left shifts (C/C++)” on page 1-96
• “Detect overflows (C/C++)” on page 1-97
• “Detect Overflows in Buffer Size Computation” on page 1-99
• “Overflow computation mode (C/C++)” on page 1-101
• “Disable checks for non-initialization (C/C++)” on page 1-103

 Option Descriptions

1-3

• “Enable pointer arithmetic across fields (C)” on page 1-105
• “Allow incomplete or partial allocation of structures (C)” on page 1-107
• “Permissive function pointer calls (C)” on page 1-110
• “Detect uncalled functions (C/C++)” on page 1-111
• “Precision level (C/C++)” on page 1-113
• “Verification level (C)” on page 1-115
• “Verification time limit (C/C++)” on page 1-118
• “Retype variables of pointer types (C)” on page 1-119
• “Retype symbols of integer types (C)” on page 1-120
• “Sensitivity context (C/C++)” on page 1-122
• “Improve precision of interprocedural analysis (C/C++)” on page 1-124
• “Specific precision (C)” on page 1-125
• “Optimize large static initializers (C/C++)” on page 1-126
• “Inline (C/C++)” on page 1-127
• “Depth of verification inside structures (C/C++)” on page 1-129
• “Generate report (C/C++)” on page 1-130
• “Report template (C/C++)” on page 1-132
• “Output format (C/C++)” on page 1-136
• “Batch (C/C++)” on page 1-138
• “Add to results repository (C/C++)” on page 1-140
• “Calculate Code Metrics (C/C++)” on page 1-141
• “Command/script to apply after the end of the code verification (C/C++)” on page

1-142
• “Automatic Orange Tester (C)” on page 1-143
• “Number of automatic tests (C)” on page 1-145
• “Maximum loop iterations (C)” on page 1-146
• “Maximum test time (C)” on page 1-147
• “Other (C)” on page 1-148

1 Option Descriptions

1-4

Target operating system (C/C++)
Specify the operating system of your target application. This option is available on the
Target & Compiler node in the Configuration pane.

This information allows the corresponding system definitions to be used during
preprocessing to analyze the included files properly.

A generic set of includes is provided with Polyspace®. These are automatically included
when the operating system is set to no-predefined-OS or Linux. For projects
developed for other operating systems, analyze these projects using the corresponding
include files for that operating system.

Settings

Default: no-predefined-OS

no-predefined-OS

Analyzes with a general operating system set up. Use with preprocessor macros (-U
or -D) to specify the system flags at compilation time.

Linux

Analyzes with the Linux® system definitions.
Solaris

Analyzes with the Solaris™ system definitions.

This option requires you to add a path to the Solaris include folder in your project, or
use the -I option at the command line.

VxWorks

Analyzes with the VxWorks® system definitions.

This option requires you to add a path to the VxWorks include folder in your project,
or use the -I option at the command line.

Visual

Analyzes with the Visual Studio® system definitions. Used for Microsoft® Windows®

systems.

This option requires you to add a path to the Visual Studio include folder in your
project, or use the -I option at the command line.

 Target operating system (C/C++)

1-5

Dependencies

Setting this parameter changes the available Dialect options. All options are available
with the no-predefined-OS option. The other operating systems only show usable
dialects for that system.

Command-Line Information
Parameter: -OS-target
Value: no-predefined-OS | Linux | Solaris | VxWorks | Visual
Default: no-predefined-OS
Example: polyspace-code-prover-nodesktop -OS-target Linux

See Also
“Dialect (C)” on page 1-13 | “Dialect (C++)” on page 2-3

Related Examples
• “Specify Analysis Options”

More About
• “Compile Operating System Dependent Code”

1 Option Descriptions

1-6

Target processor type (C/C++)

Specify the target processor type. This option is available on the Target & Compiler
node in the Configuration pane.

This determines the size of fundamental data types and the endianess of the target
machine. You can analyze code intended for an unlisted processor type using one of the
other processor types, if they share common data properties.

Settings:

Default: i386

You can modify some default attributes by selecting the browse button to the right of
the Target processor type drop-down menu. The optional settings for each target are
shown in [brackets] in the table.

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

i386 8 16 32 32 64 32 64 96 32 signed Little 32
sparc 8 16 32 32 64 32 64 128 32 signed Big 64
m68k /

ColdFirea
8 16 32 32 64 32 64 96 32 signed Big 64

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big 64
c-167 8 16 16 32 32 32 64 64 16 signed Little 64
tms320c3x 32 32 32 32 64 32 32 40b 32 signed Little 32

sharc21x6132 32 32 32 64 32 32 [64] 32 [64] 32 signed Little 32
NEC-V850 8 16 32 32 32 32 32 64 32 signed Little 32

[16, 8]

hc08c 8 16 16
[32]

32 32 32 32 [64] 32 [64] 16d unsigned Big 32 [16]

hc12 8 16 16
[32]

32 32 32 32 [64] 32 [64] 326 signed Big 32 [16]

mpc5xx 8 16 32 32 64 32 32 [64] 32 [64] 32 signed Big 32 [16]

 Target processor type (C/C++)

1-7

Target char short int long long
long

float double long
double

ptr sign of
char

endian align

c18 8 16 16 32
[24]e

32 32 32 32 16
[24]

signed Little 8

x86_64 8 16 32 64
[32]f

64 32 64 128 64 signed Little 64 [32]

mcpu...

(Advanced)g
8
[16]

8 [16] 16
[32]

32 32
[64]

32 32 [64] 32 [64] 16
[32]

signed Little 32
[16, 8]

a. The M68k family (68000, 68020, etc.) includes the “ColdFire” processor
b. Operations on long double values will be imprecise.
c. Non ANSI C specified keywords and compiler implementation-dependent pragmas and interrupt facilities are not

taken into account by this support
d. All kinds of pointers (near or far pointer) have 2 bytes (hc08) or 4 bytes (hc12) of width physically.
e. The c18 target supports the type short long as 24-bits.
f. Use option -long-is-32bits to support Microsoft C/C++ Win64 target
g. mcpu is a reconfigurable Micro Controller/Processor Unit target. You can use this type to configure one or more

generic targets. For more information, see “Generic target options (C/C++)” on page 1-8.

Tips

If your processor is not listed, use a similar processor that shares the same
characteristics, or create an mcpu generic target processor. If your target processor
does not match the characteristics of a processor described above, contact MathWorks®

technical support for advice.

Command-Line Information
Parameter: -target
Value: i386 | sparc | m68k | powerpc | c-167 | x86_64 | tms320c3x |
sharc21x61 | necv850 | hc08 | hc12 | mpc5xx | c18 | mcpu

Default: i386
Example: polyspace-code-prover-nodesktop -lang c -target m68k

Related Examples
• “Specify Analysis Options”
• “Modify Predefined Target Processor Attributes”
• “Define Generic Target Processors”

1 Option Descriptions

1-8

Generic target options (C/C++)

The Generic target options dialog box is only available when you select a mcpu target
for Target processor type. The Target processor type option is available on the
Target & Compiler node in the Configuration pane.

Allows the specification of a generic “Micro Controller/Processor Unit" target. Use the
dialog box to specify the name of a new mcpu target — e.g., MyTarget.

The generic target option is incompatible with either:

• Target operating system set to Visual
• Dialect set to visual*

That new target is added to the Target processor type option list. The default
characteristics of the new target are (using the type [size, alignment] format):

• char [8, 8]
• short [16, 16]
• int [16, 16]
• long [32, 32]
• long long [32, 32]
• float [32, 32]
• double [32, 32]
• long double [32, 32]
• pointer [16, 16]
• char is signed
• little-endian

Changing the genetic target has consequences for:

• Detection of overflow
• Computation of sizeof objects

Command-Line Options

When using the command line, specify your target with the other target specification
options.

 Generic target options (C/C++)

1-9

Option Description Available
With

Example

-little-endian Little-endian
architectures are
Less Significant
byte First (LSF). For
example: i386.

Specifies that the
less significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0xFF) and the
most significant byte
(0x00) at the second
byte.

mcpu polyspace-code-prover-

nodesktop -lang c -target

mcpu -little-endian

-big-endian Big-endian
architectures are
Most Significant
byte First (MSF). For
example: SPARC,
m68k.

Specifies that the
most significant byte
of a short integer
(e.g. 0x00FF) is
stored at the first
byte (0x00) and the
less significant byte
(0xFF) at the second
byte.

mcpu polyspace-code-prover-

nodesktop -target mcpu -

big-endian

1 Option Descriptions

1-10

Option Description Available
With

Example

-default-sign-of-char

[signed | unsigned]

Specify default sign
of char.

signed: Specifies
that char is signed,
overriding target’s
default.

unsigned: Specifies
that char is
unsigned, overriding
target’s default.

All targets polyspace-code-prover-

nodesktop -default-sign-

of-char unsigned -target

mcpu

-char-is-16bits char defined as 16
bits and all objects
have a minimum
alignment of 16 bits

Incompatible with -
short-is-8bits

and -align 8

mcpu polyspace-code-prover-

nodesktop -target mcpu -

char-is-16bits

-short-is-8bits Define short as 8
bits, regardless of
sign

mcpu polyspace-code-prover-

nodesktop -target mcpu -

short-is-8bits

-int-is-32bits Define int as 32 bits,
regardless of sign.
Alignment is also set
to 32 bits.

mcpu,
hc08,
hc12,
mpc5xx

polyspace-code-prover-

nodesktop -target mcpu -

int-is-32bits

-long-is-32bits Define long as 32
bits, regardless of
sign. Alignment is
also set to 32 bits.

If your project sets
int to 64 bits, you
cannot use this
option.

All targets polyspace-code-prover-

nodesktop -target mcpu -

long-is-32bits

 Generic target options (C/C++)

1-11

Option Description Available
With

Example

-long-long-is-64bits Define long long
as 64 bits, regardless
of sign. Alignment is
also set to 64 bits.

mcpu polyspace-code-prover-

nodesktop -target mcpu -

long-long-is-64bits

-double-is-64bits Define double and
long double as 64
bits, regardless of
sign.

mcpu,
sharc21x61,
hc08,
hc12,
mpc5xx

polyspace-code-prover-

nodesktop -target mcpu -

double-is-64bits

-pointer-is-24bits Define pointer as 24
bits, regardless of
sign.

c18 polyspace-code-prover-

nodesktop -target c18-

pointer-is-24bits

-pointer-is-32bits Define pointer as 32
bits, regardless of
sign.

mcpu polyspace-code-prover-

nodesktop -target mcpu -

pointer-is-32bits

-align [32|16|8] Specifies the largest
alignment of struct
or array objects to
the 32, 16 or 8 bit
boundaries.

Consequently, the
array or struct
storage is strictly
determined by the
size of the individual
data objects without
member and end
padding.

mcpu,

Only 16
or 32 bits
for: hc08,
hc12,
mpc5xx

polyspace-code-prover-

nodesktop -target mcpu -

align 16

See Also
“Target processor type (C/C++)” on page 1-6

1 Option Descriptions

1-12

Related Examples
• “Define Generic Target Processors”

More About
• “Common Generic Targets”

 Dialect (C)

1-13

Dialect (C)

Allow syntax associated with C language extensions. This option is available on the
Target & Compiler node in the Configuration pane.

Using this option allows additional structure types as keywords of the language, such as
sfr, sbit, and bit. These structures and associated semantics are part of the compiler
that extends the ANSI® C language.

Settings

Default: none

none

Analysis allows only ANSI C standard syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.

For more information, see “Limitations” on page 1-14.
gnu4.8

Analysis allows GCC 4.8 dialect syntax.

For more information, see “Limitations” on page 1-14.
gnu4.9

Analysis allows GCC 4.9 dialect syntax.

For more information, see “Limitations” on page 1-14.
clang3.5

Analysis allows Clang 3.5 dialect syntax.

The Clang __attribute__(vector_size()) is not supported.
visual10

Analysis allows Microsoft Visual C++® 2010 syntax.

1 Option Descriptions

1-14

visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.
keil

Analysis allows non-ANSI C syntax and semantics associated with the Keil™
products from ARM (www.keil.com).

iar

Analysis allows non-ANSI C syntax and semantics associated with the compilers
from IAR Systems (www.iar.com).

Dependency

This parameter is dependent on the value of Target operating system. The dialect
options work only with the applicable operating systems. You can use every dialect with
the Target operating system option, no-predefined-OS.

Limitations

Polyspace does not support certain aspects of the GNU® dialects 4.7 and later. These
limitations can cause compilation errors or incomplete results.

• Vector types and attributes — Not supported, ignored.

Workaround: To reduce compilation issues

• At the command line, use the option -D _EMMINTRIN_H_INCLUDED -D
_XMMINTRIN_H_INCLUDED.

• In the Polyspace environment, in Macros > Preprocessor definitions, add two
rows: _EMMINTRIN_H_INCLUDED and _XMMINTRIN_H_INCLUDED.

• Visibility attributes — Not supported, ignored.

Workaround: Remove all attributes during preprocessing,

• At the command line, use the option -D __attribute__(x)=.
• In the Polyspace environment, in Macros > Preprocessor definitions, add a

row: __attribute__(x)=.

http://www.keil.com/
http://www.iar.com/

 Dialect (C)

1-15

• Complex types — Only floating complex types supported, integral complex types
cause an error.

• Using built-in library function on complex types — Not supported, stubbed
during analysis. Calls to these functions return variables with full ranges.

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

• Computed goto — Not supported.

The goto causes an error in Code Prover. To ignore the computed gotos, stub the
functions containing the computed gotos:

• At the command line, use the option -functions-to-stub funcList where
funcList is the list of functions containing the computed gotos.

• In the Polyspace environment, in the Inputs & Stubbing > Functions to stub

table, use the button to add a row for each function containing the computed
gotos.

• Nested functions — Not supported, causes an error.
• Using built-in library functions on atomic operators — Not supported,

Polyspace stubs the functions. This limitation can cause imprecise results.
• IEEE® floating point library functions — Not supported, causes compilation

error.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Workaround: In each of your source files, include a file containing the function
definitions or declarations:

• At the command line, use the option -include filename.
•

In the Polyspace environment, in Environment Settings > Include, use the
button to add a row for your definition/declaration file.

Command-Line Information
Parameter: -dialect
Value: none | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | clang3.5 | visual10
| visual11.0 | visual12.0 | keil | iar

1 Option Descriptions

1-16

Default: none
Example: polyspace-code-prover-nodesktop -lang c -sources
"file1.c,file2.c" -lang c -OS-target Linux -dialect gnu4.6

See Also
“Target operating system (C/C++)” on page 1-4 | “Target processor type (C/C++)” on page
1-6

Related Examples
• “Verify Keil or IAR Dialects”

 Respect C90 standard (C)

1-17

Respect C90 standard (C)

Restrict the analysis to the C language specified in the ANSI C standard (ISO/IEC
9899:1990). Any language extensions added after the C90 standard will generate
compilation errors.

Settings

Default: Off

 Off
Allow C99 language extensions.

 On
Restrict the analysis to the C90 standard. Code must conform to the ANSI C
standard (ISO/IEC 9899:1990).

Dependencies

If you enable this option, the Dialect settings keil and iar are disabled.

Command-Line Information
Parameter: -no-language-extensions
Default: off
Example: polyspace-code-prover-nodesktop -lang c -no-language-
extensions

1 Option Descriptions

1-18

Sfr type support (C)

Specify the sfr types. This option is available on the Target & Compiler node in the
Configuration pane.

If the code uses sfr keywords, you must declare each sfr type using this option.

Settings

No Default

List each sfr name and its size in bits.

Dependency

Setting Dialect to keil or iar enables this parameter.

Command-Line Information
Parameter: -sfr-types sfr_name=size_in_bits,...
No Default
Name Value: an sfr name
Size Value: 8 | 16 | 32
Example: polyspace-code-prover-nodesktop -lang c -dialect iar -sfr-
types sfr=8,sfr32=32,sfrb=16 ...

 Division round down (C/C++)

1-19

Division round down (C/C++)

Specify how division and modulus of a negative numbers is interpreted by the analysis.
This option is available on the Target & Compiler node in the Configuration pane.

The ANSI standard stipulates that "if either operand of / or % is negative, whether the
result of the / operator, is the largest integer less or equal than the algebraic quotient or
the smallest integer greater or equal than the quotient, is implementation defined, same
for the sign of the % operator".

Note: a = (a / b) * b + a % b is always true.

Settings

Default: Off

 Off
If either operand of / or % is negative, the result of the / operator is the smallest
integer greater or equal than the algebraic quotient. The result of the % operator is
deduced from a % b = a - (a / b) * b

Example: assert(-5/3 == -1 && -5%3 == -2); is true.

 On
If either operand / or % is negative, the result of the / operator is the largest integer
less or equal than the algebraic quotient. The result of the % operator is deduced from
a % b = a - (a / b) * b.

Example: assert(-5/3 == -2 && -5%3 == 1); is true.

Command-Line Information
Parameter: -div-round-down
Default: Off
Example: polyspace-code-prover-nodesktop -div-round-down

1 Option Descriptions

1-20

Enum type definition (C/C++)

Allow the analysis to use different base types to represent an enumerated type,
depending on the enumerator values and the selected definition. When using this
option, each enum type is represented by the smallest integral type that can hold its
enumeration values.

This option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: defined-by-standard

defined-by-standard

Uses the signed integer type for all dialects except gnu.

For the gnu dialects, it uses the first type that can hold all of the enumerator values
from the following list: signed int, unsigned int, signed long, unsigned
long, signed long long, unsigned long long.

auto-signed-first

Uses the first type that can hold all of the enumerator values from the following list:
signed char, unsigned char, signed short, unsigned short, signed int,
unsigned int, signed long, unsigned long, signed long long, unsigned
long long.

auto-unsigned-first

Uses the first type that can hold all of the enumerator values from the following lists:

• If enumerator values are positive: unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long.

• If one or more enumerator values are negative: signed char, signed short,
signed int, signed long, signed long long.

Command-Line Information
Parameter: -enum-type-definition
Value: defined-by-standard | auto-signed-first | auto-unsigned-first
Default: signed-int
Example: polyspace-code-prover-nodesktop -enum-type-definition auto-
signed-first

 Signed right shift (C/C++)

1-21

Signed right shift (C/C++)

Choose between arithmetical and logical computation. This option is available on the
Target & Compiler node in the Configuration pane.

This option does not modify compile-time expressions. For more details, see “Limitation”
on page 1-21.

Settings

Default: Arithmetical

Arithmetical

The sign bit remains:

(-4) >> 1 = -2

(-7) >> 1 = -4

 7 >> 1 = 3

Logical

0 replaces the sign bit

(-4) >> 1 = (-4U) >> 1 = 2147483646

(-7) >> 1 = (-7U) >> 1 = 2147483644

 7 >> 1 = 3

Limitation

In compile-time expressions, this Polyspace option does not change the standard behavior
for right shifts.

For example, consider this right shift expression:

int arr[((-4) >> 20)];

The compiler computes array sizes, so the expression (-4) >> 20 is evaluated
at compilation time. Logically, this expression is equivalent to 4095. However,
arithmetically, the result is -1. This statements causes a compilation error (arrays cannot
have negative size) because the standard right-shift behavior for signed integers is
arithmetic.

1 Option Descriptions

1-22

Command-Line Information

When using the command line, arithmetic is the default computation mode. When this
option is set, logical computation is performed.
Parameter: -logical-signed-right-shift
Example: polyspace-code-prover-nodesktop -logical-signed-right-shift

 Preprocessor definitions (C/C++)

1-23

Preprocessor definitions (C/C++)

Define macro compiler flags. This option is available on the Macros node in the
Configuration pane.

Depending on your Target operating system, some compiler flags are defined by
default. Use this option to define flags that are not already defined.

Settings

No Default

Using the button, add a row for the macro flag you want to define. The flag must be
in the format Flag=Value. If you want Polyspace to ignore the flag, leave the Value
blank.

For example:

• name1=name2 replaces all instances of name1 by name2.
• name= instructs the software to ignore name.
• name with no equals sign or value replaces all instances of name by 1.

Tips

Sometimes, your source code contains non-ANSI extension keywords. Although your
compiler supports the keywords, Polyspace does not support them. To avoid compilation
errors caused by an unsupported keyword, use this option to replace all occurrences of
the keyword with a blank string in preprocessed code. The replacement occurs only for
the purposes of the analysis. Your original source code remains intact.

For example, if your compiler supports the __far keyword, to avoid compilation errors:

• In the user interface, enter __far=.
• On the command line, use the flag -D __far.

The software replaces the __far keyword with a blank string during preprocessing. For
example:

int __far* pValue;

1 Option Descriptions

1-24

is converted to:

int * pValue;

Command-Line Information

You can specify only one flag with each -D option. However, you can specify the option
multiple times.
Parameter: -D
No Default
Value: flag=value
Example: polyspace-code-prover-nodesktop -D HAVE_MYLIB -D int32_t=int

See Also
“Disabled preprocessor definitions (C/C++)” on page 1-25

 Disabled preprocessor definitions (C/C++)

1-25

Disabled preprocessor definitions (C/C++)

Disable macro compiler flags. This option is available on the Macros node in the
Configuration pane.

Some Target operating system settings enable macro compilation flags by default.
This option allows you disable these macros.

Settings

No Default

Using the button, add a new row for each macro flag being disabled.

Command-Line Information

You can specify only one flag with each -U option. However, you can specify the option
multiple times.
Parameter: -U
No Default
Value: flag
Example: polyspace-code-prover-nodesktop -U HAVE_MYLIB -U USE_COM1

See Also
“Preprocessor definitions (C/C++)” on page 1-23

1 Option Descriptions

1-26

Code from DOS or Windows file system (C/C++)

Specify that DOS or Windows files are in analysis. This option is available on the
Environment Settings node in the Configuration pane.

Use this options if the contents of the Include or Source folder come from a DOS or
Windows file system. It deals with upper/lower case sensitivity and control character
issues.

Settings

Default: On

 On
Analysis understands file names and include paths for Windows/DOS files

For example, with this option,

#include "..\mY_TEst.h"^M

#include "..\mY_other_FILE.H"^M

resolves to:

#include "../my_test.h"

#include "../my_other_file.h"

 Off
Characters are not controlled for files names or paths.

Command-Line Information
Parameter: -dos
Default: Off
Example: polyspace-code-prover-nodesktop -dos -I ./
my_copied_include_dir -D test=1

 Command/script to apply to preprocessed files (C/C++)

1-27

Command/script to apply to preprocessed files (C/C++)

Specify a command or script to run on each source file after the preprocessing phase. This
option is available on the Environment Settings node in the Configuration pane.

The command must be designed to process the standard output from preprocessing and
produce its results in accordance with that standard output. Additionally, It is important
to preserve the number of lines in the preprocessed file. Adding a line or removing one
could result in some unpredictable behavior on the location of checks and macros in the
Polyspace user interface.

Note: The Compilation Assistant is automatically disabled when you specify this option.

Settings

No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the verification, this script will be executed.

Tips

• For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script.

For example:

• To specify a Perl command that replaces all instances of the far keyword, enter
matlabroot\sys\perl\win32\bin\perl.exe -p -e "s/far//g".

• To specify a Perl script replace_keyword.pl that replaces all instances
of a keyword, enter matlabroot\sys\perl\win32\bin\perl.exe
<absolute_path>\replace_keyword.pl.

Here, matlabroot is the location of the current MATLAB® installation such as C:
\Program Files\MATLAB\R2015b\ and <absolute_path> is the location of the
Perl script.

• Use this Perl script as template. The script removes all instances of the far keyword.

1 Option Descriptions

1-28

#!/usr/bin/perl

binmode STDOUT;

Process every line from STDIN until EOF

while ($line = <STDIN>)

{

 # Remove far keyword

 $line =~ s/far//g;

 # Print the current processed line to STDOUT

 print $line;

}

You can use Perl regular expressions to perform substitutions. For instance, you can
use the following expressions.

Expression Meaning

. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.

Command-Line Information
Parameter: -post-preprocessing-command
Value: Path to executable file or command in quotes
No Default
Example in Linux: polyspace-code-prover-nodesktop -sources file_name -
post-preprocessing-command `pwd`/replace_keyword.pl

http://perldoc.perl.org/perlre.html#Regular-Expressions

 Command/script to apply to preprocessed files (C/C++)

1-29

Example in Windows: polyspace-code-prover-nodesktop -sources
file_name -post-preprocessing-command "C:\Program Files

\MATLAB\R2015b\sys\perl\win32\bin\perl.exe" "C:\My_Scripts

\replace_keyword.pl"

See Also
“Command/script to apply after the end of the code verification (C/C++)” on page 1-142

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-30

Continue with compile error (C/C++)

Continue verification even if some source files do not compile. This option is available on
the Environment Settings node in the Configuration pane.

Settings

Default: Off

 Off
If a source file does not compile, the verification stops.

Functions that are used but not specified are stubbed automatically.

 On
Continues the verification even if only one file compiles. Files that have compilation
errors are not verified. This means that the results may not contain all coding rule
violations or errors.

Functions that are used but not specified are stubbed automatically.

Command-Line Information
Parameter: -continue-with-compile-error
Default: Off
Example: polyspace-code-prover-nodesktop -continue-with-compile-error

 Include (C/C++)

1-31

Include (C/C++)

Specify files to be included by each C file involved in the analysis. This option is available
on the Environment Settings node in the Configuration pane

Settings

No Default

Specify the file name to be included in every C file involved in the analysis.

Polyspace still acts on other directives such as #include <include_file.h>.

Tips

If you have compilation problems because Polyspace does not recognize certain keywords
specific to your compiler, you can define the keywords in a header file and provide the
header file with this option.

Command-Line Information
Parameter: -include
Default: None
Value: file (Use -include multiple times for multiple files)
Example: polyspace-code-prover-nodesktop -include `pwd`/sources/
a_file.h -include /inc/inc_file.h

1 Option Descriptions

1-32

Include folders (C/C++)

View the include folders used for verification.

• To add include folders, on the Project Browser, right-click your project. Select Add
Source.

• To view the include folders that you used, with your results open, select Window >
Show/Hide View > Configuration. Under the node Environment Settings, you
see the folders listed under Include folders.

Settings

This is a read-only option available only when viewing results. Unlike other options, you
do not specify include folders on the Configuration pane. Instead, you add your include
folders on the Project Browser pane.

Command-Line Information
Parameter: -I
Value: Folder name
Example: polyspace-code-prover-nodesktop -I /com1/inc -I /com1/sys/
inc

See Also
-I | “Include (C/C++)” on page 1-31

 Constraint setup (C/C++)

1-33

Constraint setup (C/C++)

Specify range for global variables, function inputs and return values of stubbed functions
using a Data Range Specifications template file. The template file can be either
a text or an XML file. This option is available on the Inputs & Stubbing node in the
Configuration pane.

Settings

No Default

Enter full path to the template file. Alternately, click to open a Data Range
Specifications wizard. This wizard allows you to generate a template file or navigate to
an existing template file.

Command-Line Information
Parameter: -data-range-specifications
Value: file
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -data-
range-specifications "C:\DRS\range.txt"

See Also
“Functions to stub (C)” on page 1-39 | “Ignore default initialization of global variables
(C/C++)” on page 1-35

Related Examples
• “Specify Analysis Options”
• “Specify Constraints”
• “Constrain Global Variable Range”
• “Constrain Function Inputs”
• “Constrain Function Stubbing”

More About
• “Constraints”

1 Option Descriptions

1-34

• “XML File Format for Constraints”

 Ignore default initialization of global variables (C/C++)

1-35

Ignore default initialization of global variables (C/C++)

Specify that Polyspace must not treat global variables as initialized. This option is
available under the Inputs & Stubbing node in the Configuration pane.

Settings

Default: Off

 On
Polyspace ignores implicit initialization of global variables. The verification generates
a red Non-initialized variable error if your code reads a global variable before
writing to it.

 Off

Polyspace considers global variables to be initialized according to ANSI C or ISO® C+
+ standards. For instance, the default values are:

• 0 for int
• 0 for char
• 0.0 for float

Tips

• If you initialize a global variable using the generated main, Polyspace does not
produce a red Non-initialized variable error if your code reads the variable before
writing to it. The error is not produced even if you turn on the option Ignore default
initialization of global variables.

• If you initialize a global variable using the generated main, Polyspace considers that
before the first write operation on the variable in a function, the variable can take any
value allowed by its type.

For more information on initializing global variables using the generated main, see
“Variables to initialize (C)” on page 1-72.

Command-Line Information
Parameter: -no-def-init-glob

1 Option Descriptions

1-36

Default: Off

See Also
Non-initialized variable

Related Examples
• “Specify Analysis Options”

 No automatic stubbing (C/C++)

1-37

No automatic stubbing (C/C++)

Specify that verification must stop if a function is not defined in the source files. This
option is available on the Inputs & Stubbing node in the Configuration pane.

Settings

Default: Off

 On
Polyspace displays a list of undefined functions and stops verification.

 Off
Polyspace stubs all undefined functions.

Tips

Use this option when:

• The code you are verifying must be complete. This option allows you to find functions
that are not defined in your source.

• You prefer to stub undefined functions manually.

Command-Line Information
Parameter: -no-automatic-stubbing
Default: Off
Example: polyspace-code-prover-nodesktop -sources filename -no-
automatic-stubbing

See Also
“Functions to stub (C)” on page 1-39 | “Functions to stub (C++)” on page 2-51 |
“No STL stubs (C++)” on page 2-50

Related Examples
• “Specify Analysis Options”
• “Specify Functions to Stub Automatically”

1 Option Descriptions

1-38

• “Constrain Data with Stubbing”

More About
• “Stubbing Overview”
• “When to Provide Function Stubs”
• “Stubbing Examples”

 Functions to stub (C)

1-39

Functions to stub (C)

Specify functions that you want the software to stub. This option is available on the
Inputs & Stubbing node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Tips

If you do not want to review checks in a certain function, you can stub the function.
However, Polyspace makes certain assumptions about the arguments and return values
of stubbed functions. The assumptions can affect the number of checks in the rest of the
code. For example, the software considers that the return values assume the full range
allowed by the return type. For more information, see “Assumptions About Stubbed
Functions”.

You can specify external constraints on the arguments and return values of stubbed
functions. See “Constrain Function Stubbing”.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -
functions-to-stub function_1,function_2

See Also
“No automatic stubbing (C/C++)” on page 1-37 | “Constraint setup (C/C++)” on page 1-33
| “Functions to stub (C++)” on page 2-51

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-40

• “Specify Functions to Stub Automatically”
• “Constrain Data with Stubbing”

More About
• “Stubbing Overview”
• “When to Provide Function Stubs”
• “Stubbing Examples”

 Enable automatic concurrency detection (C/C++)

1-41

Enable automatic concurrency detection (C/C++)

In this section...

“Settings” on page 1-41
“Limitations” on page 1-42
“Command-Line Information” on page 1-43

Specify whether to use the automatic concurrency detection for POSIX® and VxWorks
threading functions. By selecting this option, Polyspace sets up the multitasking model
automatically. If you want to manually model your multitasking program, see “Configure
multitasking manually (C/C++)” on page 1-44.

This option is on the Multitasking node in the Configuration pane.

Settings

Default: Off

 Off
Do not detect multitasking in your code.

If you want to manually configure your multitasking model, see “Configure
multitasking manually (C/C++)” on page 1-44.

 On
Use pthread primitives to automatically detect your program’s multitasking model.
Supported pthread primitives are:

POSIX

• pthread_create

• pthread_mutex_lock

• pthread_mutex_unlock

VxWorks

• taskSpawn

• semTake

1 Option Descriptions

1-42

• semGive

Limitations

The multitasking model that this option create does not follow the exact semantics of
POSIX or VxWorks. Polyspace cannot model:

• Thread priorities and attributes — Ignored by Polyspace
• Recursive semaphores
• Unbounded thread identifiers — Warning

For example:

extern pthread_t ids[]

Or

pthread_t* ids = (pthread_t* malloc(n*sizeof(pthread_t))

• Calls to concurrency primitive through high-order calls — Warning.
• Termination of threads — Polyspace ignores pthread_join, and replaces

pthread_exit by a standard exit.
• Shared local variables — Only global variables are considered shared.

Example

#include <pthread.h>

#include <stdlib.h>

void task2(void* args) {

 int* x = (int*) args;

 *x = 1;

}

void task1() {

 int x;

 x = 2 ;

 pthread_t id;

 pthread_create(&id,NULL,task2,(void*) &x);

 /* x (local var) passed to task2 */

 x = 3 ;

 assert(x==3); /* Unknown thread priority means x == 1 OR x == 3.*/

}

 Enable automatic concurrency detection (C/C++)

1-43

int main(void) {

 task1();

}

Command-Line Information
Parameter: -enable-concurrency-detection
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -enable-
concurrency-detection

See Also
“Entry points (C/C++)” on page 1-46 | “Critical section details (C/C++)” on page
1-48 | “Temporally exclusive tasks (C/C++)” on page 1-50

Related Examples
• “Manually Model Tasks”
• “Manually Model Tasks if main Contains Infinite Loop”
• “Manually Model Execution Sequence in Tasks”

More About
• “Verify Multitasking Applications”

1 Option Descriptions

1-44

Configure multitasking manually (C/C++)

Specify whether your code is a multitasking application. This option allows you to
manually configure the multitasking structure for Polyspace. If you use POSIX or
VxWorks pthread primitives, Polyspace can detect the multitasking. See “Enable
automatic concurrency detection (C/C++)” on page 1-41.

This option is on the Multitasking node in the Configuration pane.

Settings

Default: Off

 On
The code is intended for a multitasking application.

Polyspace verifies functions that are called by the main and other entry-point
functions.

 Off
The code is not intended for a multitasking application.

• If a main exists, Polyspace verifies only those functions that are called by the
main.

• If a main does not exist, Polyspace verifies all functions. To verify all functions,
Polyspace generates a main function and calls functions from the generated main
in a sequence that you specify. For more information, see “Verify module (C)” on
page 1-70 or “Verify module (C++)” on page 2-26.

Dependencies

To enable this option, on the Configuration pane, select Code Prover Verification.
Select Verify whole application.

Command-Line Information

There is nosingle command-line option to turn on multitasking verification. By using the
-entry-points option, you turn on multitasking verification.

 Configure multitasking manually (C/C++)

1-45

See Also
“Enable automatic concurrency detection (C/C++)” on page 1-41 | “Entry points (C/C+
+)” on page 1-46 | “Critical section details (C/C++)” on page 1-48 | “Temporally
exclusive tasks (C/C++)” on page 1-50

Related Examples
• “Manually Model Tasks”
• “Manually Model Tasks if main Contains Infinite Loop”
• “Manually Model Execution Sequence in Tasks”

More About
• “Verify Multitasking Applications”

1 Option Descriptions

1-46

Entry points (C/C++)

Specify functions that serve as entry points to your code. Use this option when your code
is intended for multitasking. This option is available on the Multitasking node in the
Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Dependencies

This option is enabled only if you select the Multitasking box.

To enable this option, on the Configuration pane, select Code Prover Verification.
Select Verify whole application.

Tips

• The entry point function must have the form

void functionName (void)

• If a function func takes arguments, you cannot use it directly as entry point. To use
func as entry point:

1 Create a new function newFunc. The declaration must be of the form void
newFunc (void).

2 Declare arguments to func as volatile variables local to newFunc. Call func
inside newFunc.

3 Specify newFunc as entry point.
• If a function func models cyclic tasks or interrupts that can run zero or more times,

to specify the multiple cycles for Polyspace:

1 Create a new function newFunc of the form

void newFunc (void)

 Entry points (C/C++)

1-47

2 In the body of newFunc, call func inside a loop with unspecified number of runs.
Make the loop control variable volatile int. For example:

void newFunc(void) {

 volatile int randomValue = 0;

 while(randomValue) {

 func();

 }

}

3 Specify newFunc as entry point.

Command-Line Information
Parameter: -entry-points
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -entry-
points func_1,func_2

See Also
“Critical section details (C/C++)” on page 1-48 | “Temporally exclusive tasks (C/C++)”
on page 1-50

Related Examples
• “Specify Analysis Options”
• “Manually Model Tasks”
• “Manually Model Tasks if main Contains Infinite Loop”
• “Manually Model Execution Sequence in Tasks”

More About
• “Verify Multitasking Applications”

1 Option Descriptions

1-48

Critical section details (C/C++)
When verifying multitasking code, Polyspace considers that a critical section lies between
calls to a lock function and an unlock function. Specify the two function names. This
option is available on the Multitasking node in the Configuration pane.

When a task my_task calls a lock function my_lock, other tasks calling my_lock must
wait until my_task calls the corresponding unlock function.

Settings

No Default

Click to add a field.

• In Starting procedure, enter name of lock function.
• In Ending procedure, enter name of unlock function.

Dependencies

This option is enabled only if you select the Multitasking box.

Tips

• For function calls that begin and end critical sections, Polyspace ignores the function
arguments.

For instance, Polyspace treats the two code sections below as the same critical section.

Starting procedure: func_begin Starting procedure: func_begin
Ending procedure: func_end Ending procedure: func_end
void my_task() {

 my_lock(1);

 /* Critical section code */

 my_unlock(1);

}

void my_task() {

 my_lock(2);

 /* Critical section code */

 my_unlock(2);

}

Command-Line Information
Parameter: -critical-section-begin | -critical-section-end

 Critical section details (C/C++)

1-49

No Default
Value: function1:cs1[,function2:cs2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -
critical-section-begin func_begin:cs1 -critical-section-end

func_end:cs1

See Also

Polyspace Analysis Options
“Configure multitasking manually (C/C++)” on page 1-44 | “Entry points (C/C++)” on
page 1-46 | “Temporally exclusive tasks (C/C++)” on page 1-50

Polyspace Results
Shared protected global variable | Shared unprotected global variable

Related Examples
• “Specify Analysis Options”
• “Manually Prevent Concurrent Access Using Critical Sections”

More About
• “Verify Multitasking Applications”

1 Option Descriptions

1-50

Temporally exclusive tasks (C/C++)

Specify functions that cannot execute concurrently. The execution of the functions cannot
overlap with each other. Use this option to implement temporal exclusion in multitasking
code. This option is available on the Multitasking node in the Configuration pane.

Settings

No Default

Click to add a field. In each field, enter a space-separated list of functions. Polyspace
considers that the functions in the list cannot execute concurrently.

Dependencies

This option is enabled only if you select the Multitasking box.

Command-Line Information

For the command-line option, create a temporal exclusions file in the following format:

• On each line, enter one group of temporally excluded tasks.
• Within a line, the tasks are separated by spaces.

Parameter: -temporal-exclusions-file
No Default
Value: Name of temporal exclusions file
Example: polyspace-code-prover-nodesktop -sources file_name -
temporal-exclusions-file "C:\exclusions_file.txt"

See Also

Polyspace Analysis Options
“Configure multitasking manually (C/C++)” on page 1-44 | “Entry points (C/C++)” on
page 1-46 | “Critical section details (C/C++)” on page 1-48

Polyspace Results
Shared protected global variable | Shared unprotected global variable

 Temporally exclusive tasks (C/C++)

1-51

Related Examples
• “Specify Analysis Options”
• “Manually Prevent Concurrent Access Using Temporally Exclusive Tasks”

More About
• “Verify Multitasking Applications”

1 Option Descriptions

1-52

Check MISRA C:2004

Specify whether to check for violation of MISRA C®:2004 rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Coding Rules &
Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C rules. In Polyspace Code Prover™, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C:2004)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets
(C:2004)”.

custom

Specify coding rules to check. Click to create a coding rules file. After
creating and saving the file, to reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

 Check MISRA C:2004

1-53

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

Tips

• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

Command-Line Information
Parameter: -misra2
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-code-prover-nodesktop -sources file_name -misra2
all-rules

See Also
“Files and folders to ignore (C)” on page 1-63

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “Software Quality Objective Subsets (C:2004)”

1 Option Descriptions

1-54

Check MISRA AC AGC

Specify whether to check for violation of rules specified by MISRA AC AGC Guidelines
for the Application of MISRA-C:2004 in the Context of Automatic Code Generation. Each
value of the option corresponds to a subset of rules to check. This option is available on
the Coding Rules & Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, assigns a symbol to the keyword or
identifier relevant to the violation.

Settings

Default: OBL-rules

OBL-rules

Check required coding rules.
OBL-REC-rules

Check required and recommended rules.
all-rules

Check required, recommended and readability-related rules.
SQO-subset1

Check a subset of rules. In Polyspace Code Prover, observing these rules can reduce
the number of unproven results. For more information, see “Software Quality
Objective Subsets (AC AGC)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (AC
AGC)”.

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

 Check MISRA AC AGC

1-55

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:
rule number off|on

Use # to enter comments in the file. For example:
10.5 off # rule 10.5: type conversion

17.2 on # rule 17.2: pointers

Tips

• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

Command-Line Information
Parameter: -misra-ac-agc
Value: OBL-rules | OBL-REC-rules | all-rules | SQO-subset1 | SQO-subset2 |
file

Default: OBL-rules
Example: polyspace-code-prover-nodesktop -sources file_name -misra-
ac-agc all-rules

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers”
• “MISRA C:2004 and MISRA AC AGC Coding Rules”
• “Software Quality Objective Subsets (AC AGC)”

1 Option Descriptions

1-56

Check MISRA C:2012

Specify whether to check for violations of MISRA C:2012 guidelines. Each value of the
option corresponds to a subset of guidelines to check. This option is available on the
Coding Rules & Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: mandatory-required

mandatory-required

Check mandatory and required guidelines.
mandatory

Check mandatory guidelines.
all

Check mandatory, required, and advisory guidelines.
SQO-subset1

Check only a subset of guidelines. In Polyspace Code Prover, observing these rules
can reduce the number of unproven results. For more information, see “Software
Quality Objective Subsets (C:2012)”.

SQO-subset2

Check a subset of guidelines, SQO-subset1, plus some additional rules. In Polyspace
Code Prover, observing these rules can further reduce the number of unproven
results. For more information, see “Software Quality Objective Subsets (C:2012)”.

custom

Specify guidelines to check. Click to create a coding rules file. Save the file.
To reuse it for another project, do one of the following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

 Check MISRA C:2012

1-57

Custom file format:

rule number off|on

Use # to enter comments in the file. For example:

10.5 off # rule 10.5: essential type model

17.2 on # rule 17.2: functions

Tips

• To reduce unproven results in Polyspace Code Prover:

1 Find coding rule violations in SQO-subset1. Fix your code to address the
violations and rerun verification.

2 Find coding rule violations in SQO-subset2. Fix your code to address the
violations and rerun verification.

Command-Line Information
Parameter: -misra3
Value: mandatory | mandatory-required | all | SQO-subset1 | SQO-subset2 |
file

Default: mandatory-required
Example: polyspace-code-prover-nodesktop -lang c -sources file_name -
misra3 mandatory-required

See Also
“Files and folders to ignore (C)” on page 1-63

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

1 Option Descriptions

1-58

Use generated code requirements (C)

Specify whether to use the MISRA C:2012 categories for automatically generated code.
This option changes which rules are mandatory, required, or advisory. This option is
available on the Coding Rules & Code Metrics node in the Configuration pane.

Settings

Default: Off (On for analyses started from the Simulink® plug-in.)

 Off
Use the normal categories (mandatory, required, advisory) for MISRA C:2012 coding
guideline checking.

 On
Use the generated code categories (mandatory, required, advisory, readability) for
MISRA C:2012 coding guideline checking.

For analyses started from the Simulink plug-in, this option is the default value.

Category changed to Advisory

These rules are changed to advisory:

• 5.3
• 7.1
• 8.4, 8.5, 8.14
• 10.1, 10.2, 10.3, 10.4, 10.6, 10.7, 10.8
• 14.4, 14.4
• 15.2, 15.3
• 16.1, 16.2, 16.3, 16.4, 16.5, 16.6, 16.7
• 20.8

Category changed to Readability

These guidelines are changed to readability:

• Dir 4.5

 Use generated code requirements (C)

1-59

• 2.3, 2.4, 2.5, 2.6, 2.7
• 5.9
• 7.2, 7.3
• 9.2, 9.3, 9.5
• 11.9
• 13.3
• 14.2
• 15.7
• 17.5, 17.7, 17.8
• 18.5
• 20.5

Dependency

To use this option, first select the Check MISRA C:2012 option.

Command-Line Information
Parameter: -misra3-agc-mode
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -misra3
all -misra3-agc-mode

See Also
“Files and folders to ignore (C)” on page 1-63 | “Check MISRA C:2012” on page 1-56

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace MISRA C:2012 Checker”

1 Option Descriptions

1-60

Check custom rules (C/C++)

Define naming conventions for identifiers and check your code against them. This option
is available on the Coding Rules & Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists violations of the naming conventions.
On the Source pane, for every violation, Polyspace assigns a symbol to the keyword
or identifier relevant to the violation.

Settings

Default: Off

 On
Polyspace matches identifiers in your code against text patterns you define. Define
the text patterns in a custom coding rules file. To create a coding rules file,

• Use the custom rules wizard:

1
Click . The New File window opens.

2 From the drop-down list Set the following state to all Custom C, select
Off. Click Apply.

3 For every custom rule you want to check:

a Select On .
b In the Convention column, enter the error message you want to display

if the rule is violated.

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter All struct fields must begin with s_.
This message appears on the Result Details pane if:

• You specify the Pattern as s_[A-Za-z0-9_]+.
• A structure field in your code does not begin with s_.

c In the Pattern column, enter the text pattern.

 Check custom rules (C/C++)

1-61

For example, for rule 4.3, All struct fields must follow the specified
pattern, you can enter s_[A-Za-z0-9_]+. Polyspace reports violation
of rule 4.3 if a structure field does not begin with s_.

You can use Perl regular expressions to define patterns. For instance, you
can use the following expressions.

Expression Meaning

. Matches any single character except newline
[a-z0-9] Matches any single letter in the set a-z, or digit in

the set 0-9
[^a-e] Matches any single letter not in the set a-e
\d Matches any single digit
\w Matches any single alphanumeric character or _
x? Matches 0 or 1 occurrence of x
x* Matches 0 or more occurrences of x
x+ Matches 1 or more occurrences of x

For complete list of regular expressions, see Perl documentation.
• Manually edit an existing custom coding rules file:

1 Open the file with a text editor.
2 For every custom rule you want to check, enter the following information in

adjacent lines.

a Rule number, followed by on. For example:

4.3 on

b The error message you want to display starting with convention=. For
example:

convention=All struct fields must begin with s_

c The text pattern starting with pattern=. For example:

pattern=s_[A-Za-z0-9_]

http://perldoc.perl.org/perlre.html#Regular-Expressions

1 Option Descriptions

1-62

To use an existing coding rules file, enter the full path to the file in the field provided

or use in the New File window to navigate to the file location.

 Off
Polyspace does not check your code against custom naming conventions.

Command-Line Information
Parameter: -custom-rules
Value: Name of coding rules file
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -custom-
rules "C:\Rules\myrules.txt"

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”
• “Create Custom Coding Rules”

More About
• “Format of Custom Coding Rules File”
• “Custom Coding Rules”

 Files and folders to ignore (C)

1-63

Files and folders to ignore (C)

Specify files and folders to ignore during coding rules checking. This option is available
on the Inputs & Stubbing node in the Configuration pane.

The files and folders are not ignored during Code Prover verification.

Settings

Default: all-headers

all-headers

Ignore included .h files
all

Ignore all files in include folders
custom

Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click .

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004,
Check MISRA C:2012, Check MISRA AC AGC or Check custom rules.

Command-Line Information
Parameter: -includes-to-ignore
Value: all-headers | all | file1[,file2[,...]] | folder1[,folder2[,...]]
Default: all-headers
Example: polyspace-code-prover-nodesktop -lang c -sources file_name -
misra2 required-rules -includes-to-ignore "C:\usr\include"

See Also
“Check MISRA C:2004” on page 1-52 | “Check MISRA C:2012” on page 1-56 | “Check
MISRA AC AGC” on page 1-54 | “Check custom rules (C/C++)” on page 1-60

1 Option Descriptions

1-64

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”
• “Exclude Files from Rules Checking”

 Effective boolean types (C)

1-65

Effective boolean types (C)

Specify data types that you want Polyspace to treat as Boolean. You can specify a data
type only if you have defined it through a typedef statement in your source code. This
option is available on the Coding Rules & Code Metrics node in the Configuration
pane.

Use this option to allow Polyspace to check the following coding rules:

• MISRA C: 2004 and MISRA® AC AGC

Rule
Number

Rule Statement

12.6 Operands of logical operators, &&, ||, and !, should be effectively
Boolean. Expressions that are effectively Boolean should not be used as
operands to other operators.

13.2 Tests of a value against zero should be made explicit, unless the operand
is effectively Boolean.

15.4 A switch expression should not represent a value that is effectively
Boolean.

• MISRA C: 2012

Rule
Number

Rule Statement

MISRA
C:2012
Rule 10.1

Operands shall not be of an inappropriate essential type

MISRA
C:2012
Rule 10.3

The value of an expression shall not be assigned to an object with a
narrower essential type or of a different essential type category

MISRA
C:2012
Rule 10.5

The value of an expression should not be cast to an inappropriate
essential type

MISRA
C:2012
Rule 14.4

The controlling expression of an if statement and the controlling
expression of an iteration-statement shall have essentially Boolean type.

1 Option Descriptions

1-66

Rule
Number

Rule Statement

MISRA
C:2012
Rule 16.7

A switch-expression shall not have essentially Boolean type.

For example, in the following code, unless you specify myBool as effectively Boolean,
Polyspace detects a violation of MISRA C: 2012 rule 14.4.

typedef int myBool;

void func1(void);

void func2(void);

void func(myBool flag) {

 if(flag)

 func1();

 else

 func2();

}

Settings

No Default

Click to add a field. Enter a type name that you want Polyspace to treat as Boolean.

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004,
Check MISRA AC AGC or Check MISRA C:2012.

Command-Line Information
Parameter: -boolean-types
Value: type1[,type2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources filename -misra2
required-rules -boolean-types boolean1_t,boolean2_t

 Effective boolean types (C)

1-67

See Also
“Check MISRA C:2004” on page 1-52 | “Check MISRA AC AGC” on page 1-54

Related Examples
• “Set Up Coding Rules Checking”
• “Specify Effective Boolean Types”

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules”

1 Option Descriptions

1-68

Allowed pragmas (C)

Specify pragma directives for which MISRA C rule 3.4 should not be applied. MISRA C
or MISRA AC AGC rule 3.4 requires checking that all pragma directives are documented
within the documentation of the compiler. This option is available on the Coding Rules
& Code Metrics node in the Configuration pane.

Settings

No Default

Click to add a field. Enter the pragma name that you want Polyspace to ignore during
MISRA C checking .

Dependencies

This option is enabled only if you select one of the options Check MISRA C:2004 or
Check MISRA AC AGC.

Command-Line Information
Parameter: -allowed-pragmas
Value: pragma1[,pragma2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources filename -misra2
required-rules -allowed-pragmas pragma_01,pragma_02

See Also
“Check MISRA C:2004” on page 1-52 | “Check MISRA AC AGC” on page 1-54

Related Examples
• “Set Up Coding Rules Checking”

More About
• “MISRA C:2004 and MISRA AC AGC Coding Rules”

 Verify whole application (C/C++)

1-69

Verify whole application (C/C++)

Specify that Polyspace verification must stop if a main function is not present in the
source files. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: Off

 On
Polyspace verification stops if it does not find a main function in the source files.

 Off
Polyspace continues verification even when a main function is not present in the
source files. If a main is not present, it generates a file __polyspace_main.c that
contains a main function.

Command-Line Information
Parameter: -main
Default: On

See Also
“Verify module (C)” on page 1-70 | “Verify module (C++)” on page 2-26

Related Examples
• “Specify Analysis Options”
• “Verify C Application Without main Function”

1 Option Descriptions

1-70

Verify module (C)

Specify that Polyspace must generate a main function if it does not find one in the
source files. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: On

 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

• Initializes variables that you specify using Variables to initialize.
• Calls functions that you specify using Initialization functions ahead of other

functions.
• Calls functions that you specify using Functions to call in arbitrary order.

If you do not specify the above options explicitly, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• Calls in arbitrary order all functions that are not called anywhere in the source
files. Polyspace considers that global variables can be written between two
consecutive function calls. Therefore, in each called function, global variables
initially have the full range of values allowed by their type.

 Off
Polyspace stops verification if a main function is not present in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator ...

 Verify module (C)

1-71

See Also
“Verify whole application (C/C++)” on page 1-69 | “Variables to initialize (C)” on
page 1-72 | “Parameters (C)” on page 1-80 | “Inputs (C)” on page 1-82 |
“Initialization functions (C)” on page 1-84 | “Step functions (C)” on page 1-85 |
“Termination functions (C)” on page 1-87

Related Examples
• “Specify Analysis Options”
• “Verify C Application Without main Function”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Main Generation for Model Verification”

1 Option Descriptions

1-72

Variables to initialize (C)

Specify global variables that you want the generated main to initialize. Despite
the initialization, Polyspace considers these variables to have any value allowed by
their type. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: public

none

The generated main does not initialize global variables.
public

The generated main initializes all global variables except those declared with
keywords static and const.

all

The generated main initializes all global variables except those declared with
keyword const.

custom

The generated main only initializes global variables that you specify. Click to add
a field. Enter a global variable name.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Command-Line Information
Parameter: -main-generator-writes-variables
Value: none | public | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-writes-variables all

 Variables to initialize (C)

1-73

See Also
“Verify module (C)” on page 1-70 | “Initialization functions (C)” on page 1-74 |
“Functions to call (C)” on page 1-75

Related Examples
• “Specify Analysis Options”
• “Verify C Application Without main Function”

1 Option Descriptions

1-74

Initialization functions (C)

Specify functions that you want the generated main to call ahead of other functions. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field. Enter the name of a function.

Tips

Although these functions are called ahead of other functions, they can be called in
arbitrary order. If you want to call your initialization functions in a specific order,
manually write a main function to call them.

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myfunc

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

See Also
“Verify module (C)” on page 1-70 | “Variables to initialize (C)” on page 1-72 | “Functions
to call (C)” on page 1-75

Related Examples
• “Specify Analysis Options”
• “Verify C Application Without main Function”

 Functions to call (C)

1-75

Functions to call (C)

Specify the functions that you want the generated main to call. The main calls these
functions after the ones you specify through the Initialization functions option. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

Default: unused

none

The generated main does not call any function.
unused

The generated main calls only those functions that are not called in the source code.
It does not call inlined functions.

all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify. Click to add a field. Enter
the name of a function.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Tips

• Select unused when you use Code Prover Verification > Verify files
independently.

• If you want the generated main to call an inlined function, select custom and specify
the name of the function.

• To verify a multitasking application without a main, select none.
• The generated main can call the functions in arbitrary order. If you want to call your

functions in a specific order, manually write a main function to call them.

1 Option Descriptions

1-76

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-calls all

See Also
“Verify module (C)” on page 1-70 | “Variables to initialize (C)” on page 1-72 |
“Initialization functions (C)” on page 1-74

Related Examples
• “Specify Analysis Options”
• “Verify C Application Without main Function”

 Verify files independently (C/C++)

1-77

Verify files independently (C/C++)

Specify that a separate verification job will be created for each source file. Each file is
verified individually, independent of other files in the module. Verification results can be
viewed for the entire project or for individual files. This option is available on the Code
Prover Verification node in the Configuration pane.

Settings

Default: Off

 On
Polyspace creates a separate verification job for each source file.

 Off
Polyspace creates a single verification job for all source files in a module.

Dependencies

This option is enabled only if you select Code Prover Verification > Verify module on
the Configuration pane.

Tips

• If you perform a file by file verification, you cannot specify multitasking options.

Command-Line Information
Parameter: -unit-by-unit
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit

See Also
“Common source files (C/C++)” on page 1-79

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-78

• “Run File-by-File Local Verification”
• “Run File-by-File Remote Verification”

More About
• “Multiple File Error in File by File Verification”

 Common source files (C/C++)

1-79

Common source files (C/C++)

For a file by file verification, specify files that you want to include with each source file
verification. These files are compiled once, and then linked to each verification. This
option is available on the Code Prover Verification node in the Configuration pane.

For instance, if multiple source files call the same function, use this option to specify the
file that contains the function definition. Otherwise, Polyspace stubs functions that are
called but not defined in the source files.

Settings

No Default

Click to add a field. Enter the full path to a file. Otherwise, use the button to
navigate to the file location.

Dependencies

This option is enabled only if you select Verify files independently.

Command-Line Information
Parameter: -unit-by-unit-common-source
Value: file1[,file2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -unit-by-
unit -unit-by-unit-common-source definitions.c

See Also
“Verify files independently (C/C++)” on page 1-77

Related Examples
• “Specify Analysis Options”
• “Run File-by-File Local Verification”
• “Run File-by-File Remote Verification”

1 Option Descriptions

1-80

Parameters (C)

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type. This option is available on the Code Prover Verification node in
the Configuration pane.

Settings

Default: public

public

The generated main initializes all variables except those declared with keywords
static and const.

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | public | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
“Inputs (C)” on page 1-82 | “Initialization functions (C)” on page 1-84 | “Step
functions (C)” on page 1-85 | “Termination functions (C)” on page 1-87

 Parameters (C)

1-81

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

1 Option Descriptions

1-82

Inputs (C)

This option is available only for model-generated code.

Specify variables that the generated main must initialize at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have anyvalue allowed by their type. This option is available
on the Code Prover Verification node in the Configuration pane.

Settings

Default: public

public

The generated main initializes all variables except those declared with keywords
static and const.

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click to add a
field. Enter variable name.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | public | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
“Parameters (C)” on page 1-80 | “Initialization functions (C)” on page 1-84 | “Step
functions (C)” on page 1-85 | “Termination functions (C)” on page 1-87

 Inputs (C)

1-83

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

1 Option Descriptions

1-84

Initialization functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call before the cyclic code begins. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
“Parameters (C)” on page 1-80 | “Inputs (C)” on page 1-82 | “Step functions (C)” on page
1-85 | “Termination functions (C)” on page 1-87

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

 Step functions (C)

1-85

Step functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

Default: unused

none

The generated main does not call functions in the cyclic code.
unused

The generated main calls all functions that are not called elsewhere in the code. In
particular, if you specify certain functions for the options Initialization functions
or Termination functions, the generated main does not call those functions in the
cyclic code. It also does not call inlined functions.

all

The generated main calls all functions except inlined ones. If you specify certain
functions for the options Initialization functions or Termination functions, the
generated main does not call those functions in the cyclic code.

custom

The generated main calls functions that you specify. Click to add a field. Enter
function name.

Tips

• When you select unused, the generated main does not call a function if it is called
elsewhere. However, this rule does not apply to calls through function pointers. The
generated main calls a function even when it is called elsewhere through a function
pointer.

• If you have specified a function for the option Initialization functions or
Termination functions, to call it inside the cyclic code, use custom and specify the
function name.

1 Option Descriptions

1-86

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
“Parameters (C)” on page 1-80 | “Inputs (C)” on page 1-82 | “Initialization functions (C)”
on page 1-84 | “Step functions (C)” on page 1-85 | “Termination functions (C)” on
page 1-87

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

 Termination functions (C)

1-87

Termination functions (C)

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code ends. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
“Parameters (C)” on page 1-80 | “Inputs (C)” on page 1-82 | “Initialization functions (C)”
on page 1-84 | “Step functions (C)” on page 1-85

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

1 Option Descriptions

1-88

Respect types in fields (C/C++)

Specify that structure fields not declared initially as pointers will not be cast to
pointers later. This option is available on the Verification Assumptions node in the
Configuration pane.

Settings

Default: Off

 On
The verification assumes that structure fields not declared initially as pointers will
not be cast to pointers later.

Code with option off Code with option on

struct {

 unsigned int x1;

 unsigned int x2;

} S;

void funct(void) {

 int var, *tmp;

 S.x1 = &var;

 tmp = (int*)S.x1;

 *tmp = 1;

 assert(var==1);

}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned off,
Polyspace allows the cast.

struct {

 unsigned int x1;

 unsigned int x2;

} S;

void funct(void) {

 int var, *tmp;

 S.x1 = &var;

 tmp = (int*)S.x1;

 *tmp = 1;

 assert(var==1);

}

In this example, the fields of S are
declared as integers but S.x1 is cast to
a pointer. With the option turned on,
Polyspace ignores the cast. Therefore, it
ignores the initialization of var through
the pointer (int*)S.x1 and produces
a red Non-initialized local variable
error when var is read.

 Off
The verification assumes that structure fields can be cast to pointers even when they
are not declared as pointers.

 Respect types in fields (C/C++)

1-89

Command-Line Information
Parameter: -respect-types-in-fields
Default: Off

See Also

Polyspace Analysis Options
“Respect types in global variables (C/C++)” on page 1-90

Polyspace Results
Non-initialized local variable

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-90

Respect types in global variables (C/C++)

Specify that global variables not declared initially as pointers will not be cast to
pointers later. This option is available on the Verification Assumptions node in the
Configuration pane.

Settings

Default: Off

 On
The verification assumes that global variables not declared initially as pointers will
not be cast to pointers later.

Code with option off Code with option on

int global;

void main(void) {

 int local;

 global = (int)&local;

 (int)global = 5;

 assert(local==5);

}

In this example, global is declared as
an int variable but cast to a pointer.
With the option turned off, Polyspace
allows the cast.

int global;

void main(void) {

 int local;

 global = (int)&local;

 (int)global = 5;

 assert(local==5);

}

In this example, global is declared as
an int variable but cast to a pointer.
With the option turned on, Polyspace
ignores the cast. Therefore, it ignores
the initialization of local through the
pointer (int*)global and produces
a red Non-initialized local variable
error when local is read.

 Off
The verification assumes that global variables can be cast to pointers even when they
are not declared as pointers.

Command-Line Information
Parameter: -respect-types-in-globals

 Respect types in global variables (C/C++)

1-91

Default: Off

See Also

Polyspace Analysis Options
“Respect types in fields (C/C++)” on page 1-88

Polyspace Results
Non-initialized local variable

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-92

Ignore float rounding (C/C++)

Specify that operations involving float and double variables do not involve rounding.
This option is available on the Verification Assumptions node in the Configuration
pane.

Settings

Default: Off

 On
The verification considers that operations involving float and double variables do
not involve rounding.

 Off
The verification assumes that results of operations involving float and double are
rounded to the nearest value, according to the IEEE 754 standard:

• Simple precision on 32-bit targets
• Double precision on 64-bit targets

The verification does not take into account any extended precision mechanism. For
instance, in this code, the verification does not accumulate rounding errors from each
+ operation by using an extended precision mechanism. Therefore, it does not detect
an overflow in one of the later + operations. Instead, it produces a green overflow
check on each + operation and ignores the corresponding rounding error.

#include <float.h>

void func(void) {

 double base = DBL_MAX;

 double acc = 1.2474001934591998822852329456480241037921570377722e+291;

 base = (acc + base) + acc + acc + acc + acc + acc + acc + acc;

}

Command-Line Information
Parameter: -ignore-float-rounding
Default: Off

 Ignore float rounding (C/C++)

1-93

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-94

Green absolute address checks (C/C++)

Specify that absolute addresses in your code are valid addresses. This option is available
on the Verification Assumptions node in the Configuration pane.

Settings

Default: Off

 On
The verification assumes that the absolute addresses in your code are valid.

 Off
The verification generates an orange Absolute Address check when an absolute
address is assigned to a pointer. The orange check occurs because the software does
not have information about the absolute address and cannot verify, for example, the
validity of the address and the availability of memory.

Tips

Even if you use this option, you cannot assign an absolute address to a pointer and
perform pointer arithmetic using the pointer. As soon as you perform pointer arithmetic,
Polyspace cannot verify the validity of the next dereference using this pointer

Command-Line Information
Parameter: -green-absolute-address-checks
Default: Off

See Also

Polyspace Results
Absolute address

Related Examples
• “Specify Analysis Options”

 Ignore overflowing computations on constants (C/C++)

1-95

Ignore overflowing computations on constants (C/C++)

Specify that the verification must allow overflow in computations involving constants.
For instance, char x = 0xff; causes an overflow according to the ANSI C standard.
However, if you use this option, Polyspace considers that this statement is equivalent
to char x = -1;. This option is available on the Check Behavior node in the
Configuration pane.

Settings

Default: Off

 On
The verification allows overflows in computations involving constants.

 Off
If an overflow occurs in computations involving constants, the verification generates
an Overflow error.

Tips

• This option applies to computations involving compile-time constants only. For
instance, the statement char x = (rand() ? 0xFF:0xFE); causes an Overflow
error irrespective of whether the option is used because the value of x is not known at
compile-time.

Command-Line Information
Parameter: -ignore-constant-overflows
Default: Off

See Also

Polyspace Results
Overflow

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-96

Allow negative operand for left shifts (C/C++)

Specify that the verification must allow shift operations on a negative number. Unless
you use this option, following ANSI C standard, the verification generates an error
for the shift operations. This option is available on the Check Behavior node in the
Configuration pane.

Settings

Default: Off

 On
The verification allows shift operations on a negative number, for instance, -2 << 2.

 Off
If a shift operation is performed on a negative number, the verification generates an
error.

Command-Line Information
Parameter: -allow-negative-operand-in-shift
Default: Off

See Also

Polyspace Results
Shift operations

Related Examples
• “Specify Analysis Options”

 Detect overflows (C/C++)

1-97

Detect overflows (C/C++)

Specify integer overflows to check for. This option is available on the Check Behavior
node in the Configuration pane.

Settings

Default: signed

signed

The verification checks for overflows in computations involving signed integers alone.
This behavior conforms to the ANSI C (ISO C++) standard.

signed-and-unsigned

The verification checks for overflows in all integer computations. This behavior is
stricter than the ANSI C (ISO C++) standard.

none

The verification does not check for integer overflows. If a computed value exceeds
the range of its type, the value is wrapped. For instance, in the following code, x is
wrapped to 0 after the sum.

unsigned char x;

x = 255;

x = x+1;

Tips

• Following an overflow, unless you select none, Polyspace can either wrap the result or
restrict it to its extremum value. Use Overflow computation mode to specify how
the verification handles results of an overflow.

• Use the option signed-and-unsigned if you are computing the size of a buffer
from unsigned integers. Using this option helps you detect an overflow at the buffer
computation stage. Otherwise, you might see an error later due to insufficient buffer.

• If you use the option signed-and-unsigned, Polyspace does not produce an
overflow error on bitwise NOT operations if you cast the result of the operation back
to the operand type. For instance, Polyspace does not produce an overflow error on
(uint8_t)(~var) where var is of type uint8_t.

1 Option Descriptions

1-98

Command-Line Information
Parameter: -scalar-overflows-checks
Value: signed | signed-and-unsigned | none
Default: signed
Example: polyspace-code-prover-nodesktop -sources file_name -scalar-
overflows-checks signed

See Also

Polyspace Analysis Options
“Overflow computation mode (C/C++)” on page 1-101

Polyspace Results
Overflow

Related Examples
• “Specify Analysis Options”
• “Detect Overflows in Buffer Size Computation” on page 1-99

 Detect Overflows in Buffer Size Computation

1-99

Detect Overflows in Buffer Size Computation

If you are computing the size of a buffer from unsigned integers, for the Detect
overflows option, use signed-and-unsigned. Using this option helps you detect
an overflow at the buffer computation stage. Otherwise, you might see an error later
due to insufficient buffer. This option is available on the Check Behavior node in the
Configuration pane.

For this example, save the following C code in a file display.c:

#include <stdlib.h>

#include <stdio.h>

int get_value(void);

void display(unsigned int num_items) {

 int *array;

 array = (int *) malloc(num_items * sizeof(int)); // overflow error

 if (array) {

 for (unsigned int ctr = 0; ctr < num_items; ctr++) {

 array[ctr] = get_value();

 }

 for (unsigned int ctr = 0; ctr < num_items; ctr++) {

 printf("Value is %d.\n", ctr, array[ctr]);

 }

 free(array);

 }

}

void main() {

 display(33000);

}

1 Create a Polyspace project and add display.c to the project.
2 On the Configuration pane, select the following options:

• Target & Compiler: From the Target processor type drop-down list, select a
type with 16-bit int such as c167.

• Check Behavior: From the Detect overflows drop-down list, select signed.
3 Run the verification and open the results.

1 Option Descriptions

1-100

Polyspace detects an orange Illegally dereferenced pointer error on the line
array[ctr] = get_value() and a red Non-terminating loop error on the for
loop.

This error follows from an earlier error. For a 16-bit int, there is an overflow on the
computation num_items * sizeof(int). Polyspace does not detect the overflow
because it occurs in computation with unsigned integers. Instead Polyspace wraps
the result of the computation causing the Illegally dereferenced pointer error
later.

4 From the Detect overflows drop-down list, select signed-and-unsigned.
5 Polyspace detects a red Overflow error in the computation num_items *

sizeof(int).

See Also

Polyspace Analysis Options
“Detect overflows (C/C++)” on page 1-97

Polyspace Results
Overflow | Illegally dereferenced pointer

 Overflow computation mode (C/C++)

1-101

Overflow computation mode (C/C++)

Specify whether Polyspace must wrap the result of an integer overflow or restrict it
to its extremum value. This option is available on the Check Behavior node in the
Configuration pane.

Settings

Default: truncate-on-error

truncate-on-error

If the Overflow check on an operation is:

• Red, Polyspace does not analyze the remaining code in the current scope.
• Orange, Polyspace analyzes the remaining code in the current scope. However,

Polyspace considers that:

• After a positive Overflow, the result of the operation has an upper bound.
This upper bound is the maximum value allowed by the type of the result.

• After a negative Overflow, the result of the operation has a lower bound. This
lower bound is the minimum value allowed by the type of the result.

wrap-around

Polyspace analyzes the remaining code in the current scope even after a red integer
Overflow. However, Polyspace wraps the result of the overflow. For instance, if you
choose this option:

• In the following code, after the red Overflow, Polyspace considers that i has a
value -231.

#include<stdio.h>

void main() {

 int i=1;

 i = i << 30;

 i = i *2;

 printf("%d",i);

}

1 Option Descriptions

1-102

• In the following code, before the orange Overflow, i has values in the range
[1..2

31
-1]. But, after the orange Overflow, Polyspace considers that i has even

values in the range [-231..2] or [2..231-2].

#include<stdio.h>

int getVal();

void main() {

 int i=getVal();

 if(i>0) {

 i = i*2;

 printf("%d",i);

 }

}

Command-Line Information
Parameter: -scalar-overflows-behavior
Value: wrap-around | truncate-on-error
Default: truncate-on-error
Example: polyspace-code-prover-nodesktop -sources file_name -scalar-
overflows-behavior wrap-around

See Also

Polyspace Analysis Options
“Detect overflows (C/C++)” on page 1-97

Polyspace Results
Overflow

Related Examples
• “Specify Analysis Options”

 Disable checks for non-initialization (C/C++)

1-103

Disable checks for non-initialization (C/C++)

Specify that Polyspace Code Prover must not check for non-initialization in your code.
This option is available on the Check Behavior node in the Configuration pane.

Settings

Default: Off

 On
Polyspace Code Prover does not perform the following checks:

• Non-initialized local variable: Local variable is not initialized before being read.
• Non-initialized variable: Variable other than local variable is not initialized before

being read.
• Non-initialized pointer: Pointer is not initialized before being read.
• Initialized return value: C function does not return value when expected.

Polyspace assumes that, at declaration:

• Variables have full-range of values allowed by their type.
• Pointers can be NULL-valued or point to a memory block at an unknown offset.

 Off
Polyspace Code Prover checks for non-initialization in your code. The software
displays red checks if, for instance, a variable is not initialized and orange checks if a
variable is initialized only on some execution paths.

Tips

• If you select this option, the software does not report most violations of MISRA C:
2004, rule 9.1, and MISRA C:2012 Rule 9.1.

• If you select this option, the number and type of orange checks in your code can
change.

For instance, the following table shows an additional orange check with the option
enabled.

1 Option Descriptions

1-104

Checks for Non-initialization Enabled Checks for Non-initialization Disabled

void func(int flag) {

 int var1,var2;

 if(flag==0) {

 var1=var2;

 }

 else {

 var1=0;

 }

 var2=var1 + 1;

}

In this example, the software produces:

• A red Non-initialized local variable
check on var2 in the if branch. The
verification continues as if only the
else branch of the if statement
exists.

• A green Non-initialized local
variable check on var1 in the last
statement. var1 has the assigned
value 0.

• A green Overflow check on the +
operation.

void func(int flag) {

 int var1,var2;

 if(flag==0) {

 var1=var2;

 }

 else {

 var1=0;

 }

 var2=var1 + 1;

}

In this example, the software:

• Does not produce Non-initialized
local variable checks. At
initialization, the software assumes
that var2 has full range of int
values. Following the if statement,
because the software considers both
if branches, it assumes that var1
also has full range of int values.

• Produces an orange Overflow check
on the + operation. For instance, if
var1 has the maximum int value,
adding 1 to it can cause an overflow.

Command-Line Information
Parameter: -disable-initialization-checks
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -disable-
initialization-checks

Related Examples
• “Specify Analysis Options”

 Enable pointer arithmetic across fields (C)

1-105

Enable pointer arithmetic across fields (C)

Specify that a pointer assigned to a structure field can point outside its bounds as long as
it points within the structure. This option is available on the Check Behavior node in
the Configuration pane.

Settings

Default: Off

 On
A pointer assigned to a structure field can point outside the bounds imposed by
the field as long as it points within the structure. For instance, in the following
code, unless you use this option, the verification will produce a red Illegally
dereferenced pointer check:

void main(void) {

struct S {char a; char b; int c;} x;

char *ptr = &x.b;

ptr ++;

*ptr = 1; // Red on the dereference, because ptr points outside x.b

}

 Off
A pointer assigned to a structure field can point only within the bounds imposed by
the field.

Tips

• The verification does not allow a pointer with negative offset values. This behavior
occurs irrespective of whether you choose the option Enable pointer arithmetic
across fields.

Command-Line Information
Parameter: -allow-ptr-arith-on-struct
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -allow-
ptr-arith-on-struct

1 Option Descriptions

1-106

See Also

Polyspace Analysis Options
“Allow incomplete or partial allocation of structures (C)” on page 1-107

Polyspace Results
Illegally dereferenced pointer

Related Examples
• “Specify Analysis Options”

 Allow incomplete or partial allocation of structures (C)

1-107

Allow incomplete or partial allocation of structures (C)

Specify that the verification must allow dereferencing a pointer that points to a structure
but has a sufficient buffer for only some of the structure’s fields. This option is available
on the Check Behavior node in the Configuration pane.

This type of pointer results when a pointer to a smaller structure is cast to a pointer to a
larger structure. The pointer resulting from the cast has sufficient buffer for only some
fields of the larger structure.

Settings

Default: Off

 On
When a pointer with insufficient buffer is dereferenced,Polyspace does not produce
an Illegally dereferenced pointer error, as long as the dereference occurs within
allowed buffer.

For instance, in the following code, the pointer p has sufficient buffer for the first two
fields of the structure BIG. Therefore, with the option on, Polyspace considers that
the first two dereferences are valid. The third dereference takes p outside its allowed
buffer. Therefore, Polyspace produces an Illegally dereferenced pointer error on
the third dereference.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;

typedef struct _big { int a; int b; int c; } BIG;

void main(void) {

 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {

 p->a = 0 ;

 p->b = 0 ;

 p->c = 0 ; // Red IDP check

 }

}

 Off

1 Option Descriptions

1-108

Polyspace does not allow dereferencing a pointer to a structure if the pointer does
not have sufficient buffer for all fields of the structure. It produces an Illegally
dereferenced pointer error the first time you dereference the pointer.

For instance, in the following code, even though the pointer p has sufficient buffer for
the first two fields of the structure BIG, Polyspace considers that dereferencing p is
invalid.

#include <stdlib.h>

typedef struct _little { int a; int b; } LITTLE;

typedef struct _big { int a; int b; int c; } BIG;

void main(void) {

 BIG *p = malloc(sizeof(LITTLE));

 if (p!= ((void *) 0)) {

 p->a = 0 ; // Red IDP check

 p->b = 0 ;

 p->c = 0 ;

 }

}

Tips

• The verification also allows partial allocation of structures when you select Enable
pointer arithmetic across fields or Precision > Retype variables of pointer
types.

• If you do not turn on this option, you cannot point to the field of a partially allocated
structure.

For instance, in the preceding example, if you do not turn on the option and perform
the assignment

int *ptr = &(p->a);

Polyspace considers that the assignment is invalid. If you dereference ptr, it produces
an Illegally dereferenced pointer error.

Command-Line Information
Parameter: -size-in-bytes
Default: Off

 Allow incomplete or partial allocation of structures (C)

1-109

Example: polyspace-code-prover-nodesktop -sources file_name -size-in-
bytes

See Also

Polyspace Analysis Options
“Enable pointer arithmetic across fields (C)” on page 1-105

Polyspace Results
Illegally dereferenced pointer

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-110

Permissive function pointer calls (C)

Specify that the verification must allow function pointer calls where the type of the
function pointer does not match the type of the function. This option is available on the
Check Behavior node in the Configuration pane.

Settings

Default: Off

 On
The verification must allow function pointer calls where the type of the function
pointer does not match the type of the function. For instance, a function declared as
int f(int*) can be called by a function pointer declared as int fptr(void*).

 Off
The verification must require that the argument and return types of a function
pointer and the function it calls are identical.

Tips

• With sources that use function pointers extensively, enabling this option can cause
loss in performance. This loss occurs because the verification has to consider more
execution paths.

Command-Line Information
Parameter: -permissive-function-pointer
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -
permissive-function-pointer

Related Examples
• “Specify Analysis Options”

 Detect uncalled functions (C/C++)

1-111

Detect uncalled functions (C/C++)
Detect functions that are not called directly or indirectly from main or another entry
point during run-time. This option is available on the Check Behavior node in the
Configuration pane.

Settings

Default: none

none

The verification does not generate checks for uncalled functions.
never-called

The verification generates checks for functions that are defined but not called.
called-from-unreachable

The verification generates checks for functions that are defined and called from an
unreachable part of the code.

all

The verification generates checks for functions that are:

• Defined but not called
• Defined and called from an unreachable part of the code.

Command-Line Information
Parameter: -uncalled-function-checks
Value: none | never-called | called-from-unreachable | all
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -
uncalled-function-checks all

See Also

Polyspace Results
Function not called | Function not reachable

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-112

• “Review Gray Checks”
• “Review and Fix Function Not Called Checks”
• “Review and Fix Function Not Reachable Checks”

 Precision level (C/C++)

1-113

Precision level (C/C++)
Specify the precision level that the verification must use. Higher precision leads to
greater number of proven results but also requires more verification time. Each precision
level corresponds to a different algorithm used for verification. This option is available on
the Precision node in the Configuration pane.

Settings

Default: 2

0

This option corresponds to a static interval verification.

1

This option corresponds to a complex polyhedron model of domain values.

2

This option corresponds to more complex algorithms closely modelling domain values.
The algorithms combine both complex polyhedrons and integer lattices.

3

This option is only suitable for code having less than 1000 lines. Using this option,
the percentage of proven results can be very high.

Tips

For best results in reasonable time, use the default level 2. If the verification takes a long
time, reduce precision. However, the number of unproven checks can increase. Likewise,
to reduce orange checks, you can improve your precision. But the verification can take
significantly longer time.

Command-Line Information
Parameter: -O0 | -O1 | -O2 | -O3
Default: -O2
Example: polyspace-code-prover-nodesktop -sources file_name -O1

See Also
“Verification level (C)” on page 1-115

1 Option Descriptions

1-114

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

 Verification level (C)

1-115

Verification level (C)

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time. This option is available on the Precision node in the Configuration pane.

Settings

Default: Software Safety Analysis level 2

C Source Compliance Checking

Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level 0

The verification process runs once on your source code.
Software Safety Analysis level 1

The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs thrice on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips

• Use a higher verification level for fewer orange checks.

Difference between Level 0 and 1

The following example illustrates the difference between Software Safety
Analysis level 0 and Software Safety Analysis level 1:

1 Option Descriptions

1-116

Software Safety Analysis Level 0 Software Safety Analysis Level 1

#include <stdlib.h>

void ratio (float x, float *y)

{

 *y=(abs(x-*y))/(x+*y);

}

void level1 (float x,

 float y, float *t)

{ float v;

 v = y;

 ratio (x, &y);

 *t = 1.0/(v - 2.0 * x);

}

float level2(float v)

{

 float t;

 t = v;

 level1(0.0, 1.0, &t);

 return t;

}

void main(void)

{

 float r,d;

 d= level2(1.0);

 r = 1.0 / (2.0 - d);

}

#include <stdlib.h>

void ratio (float x, float *y)

{

 *y=(abs(x-*y))/(x+*y);

}

void level1 (float x,

 float y, float *t)

{ float v;

 v = y;

 ratio (x, &y);

 *t = 1.0/(v - 2.0 * x);

}

float level2(float v)

{

 float t;

 t = v;

 level1(0.0, 1.0, &t);

 return t;

}

void main(void)

{

 float r,d;

 d= level2(1.0);

 r = 1.0 / (2.0 - d);

}

In the table, verification produces an orange Division by Zero check during level
0 verification. The check turns green during level 1. The verification acquires more
precise knowledge of x in the higher level.

• For best results, use the option Software Safety Analysis level 2. If the
verification takes too long, use a lower Verification level. Fix red errors and gray
code before rerunning the verification with higher verification levels.

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

 Verification level (C)

1-117

Dependency

Do not specify the option Batch with the Verification Level option set to C source
compliance checking. The source compliance checking or compilation phase
takes place on your local computer even in batch mode. Therefore, if you are running
verification only to the end of compilation, run verification on your local computer.

Command-Line Information
Parameter: -to
Value: c-compile | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example: polyspace-code-prover-nodesktop -sources file_name -to pass2

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

1 Option Descriptions

1-118

Verification time limit (C/C++)

Specify a time limit for the verification in hours. If the verification does not complete
within that limit, it stops. This option is available on the Precision node in the
Configuration pane.

Settings

Enter the time in hours. For fractions of an hour, specify decimal form.

Command-Line Information
Parameter: -timeout
Value: time
Example: polyspace-code-prover-nodesktop -sources file_name -timeout
5.75

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

 Retype variables of pointer types (C)

1-119

Retype variables of pointer types (C)

Specify that the verification must allow pointers to be cast from one type to another. If
you select this option, the verification replaces the original type of the pointer by its new
type. This option is available on the Precision node in the Configuration pane.

Settings

Default: Off

 On
The verification allows pointers to be cast from one type to another. It replaces the
original type of the pointer by its new type. For instance, using this option, the
software produces a green check on the assert statement in the following code:
struct A {int a; char b;} s = {1,2};

char *tmp = (char *)&s;

struct A *pa = (struct A*)tmp;

assert((pa->a == 1) && (pa->b == 2));

 Off
The verification retains the declaration type of a pointer even when it is recast.

Command-Line Information
Parameter: -retype-pointer
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -retype-
pointer

See Also
“Enable pointer arithmetic across fields (C)” on page 1-105 | “Allow incomplete or partial
allocation of structures (C)” on page 1-107

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-120

Retype symbols of integer types (C)

Specify that the verification must allow integers to be cast to pointers. This option is
available on the Precision node in the Configuration pane.

Settings

Default: Off

 On
The verification allows integers to be cast to pointers. For instance, using this option,
the software can prove the assert statements in the following code:
void function(void)

 {

 struct S1 {

 int x;

 int y;

 int z;

 char t;

 } s1 = {1,2,3,4};

 int addr;

 addr = (int)(&s1);

 assert(((struct S1 *)addr)->y == 2);

}

 Off
The verification does not allow integers to be cast to pointers.

Dependencies

This option:

• Automatically enables Check Behavior > Allow incomplete or partial allocation
of structures.

• Has no effect on global integers if you select the option Verification Assumptions >
Respect types in global variables.

• Has no effect on integers that are structure fields if you select the option
Verification Assumptions > Respect types in fields.

 Retype symbols of integer types (C)

1-121

Tips

• Use this option for:

• Code with memory mapping
• Code close to the communication layer API – When your code contains low level

drivers, it tends to perform generic pointer casts using (void *).
• If you set this option:

• Some of the Illegally dereferenced pointer checks can change
• Some of the Non-initialized variable checks can change to Non-

initialized pointer checks.

Command-Line Information
Parameter: -retype-int-pointer
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -retype-
int-pointer

See Also
Illegally dereferenced pointer

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-122

Sensitivity context (C/C++)

Specify that the software must store call context information during verification. Storing
call context information results in more precise variable ranges in the function body and
potentially fewer orange checks. This option is available on the Precision node in the
Configuration pane.

For instance, if a function contains a red or orange check and a green check on the same
operation for two different invocations, the software combines the contexts and displays
an orange check on the operation. If you use this option, you can identify the color of the
check for each invocation. For more information, see “Identify Function Call Causing
Orange Check”.

Settings

Default: none

none

The software does not store call context information for functions.
auto

The software stores call context information for checks in:

• Functions that form the leaves of the call tree. These functions are called by other
functions, but do not call functions themselves.

• Small functions. The software uses an internal threshold to determine whether a
function is small.

custom

The software stores call context information for functions that you specify. To enter

the name of a function, click .

Command-Line Information
Parameter: -context-sensitivity
Value: function1[,function2,...]
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -context-
sensitivity myFunc1,myFunc2

 Sensitivity context (C/C++)

1-123

To allow the software to determine which functions receive call context storage, use the
option -context-sensitivity-auto.

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-124

Improve precision of interprocedural analysis (C/C++)

Use this option to avoid certain software approximations on execution paths. Avoiding
these approximations results in fewer orange checks but a much longer verification time.
This option is available on the Precision node in the Configuration pane.

For instance, for deep function call hierarchies or nested conditional statements, to
complete verification in a reasonable amount of time, the software combines many
execution paths and stores less information at each stage of verification. If you use this
option, the software stores more information about the execution paths, resulting in a
more precise verification.

Settings

Default: Off

Enter a positive integer to turn on this option.

Entering a higher value leads to a greater number of proven results, but also increases
verification time exponentially. For instance, a value of 10 can result in very long
verification times.

Tips

Use this option only when you have less than 1000 lines of code.

Command-Line Information
Parameter: -path-sensitivity-delta
Value: Positive integer
Example: polyspace-code-prover-nodesktop -sources file_name -path-
sensitivity-delta 1

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

 Specific precision (C)

1-125

Specific precision (C)

Specify source files that you want to verify at a Precision level higher than that for the
entire verification. This option is available on the Precision node in the Configuration
pane.

Settings

Default: All files are verified with the precision you specified using Precision >
Precision level.

Click to enter the name of a file and the corresponding precision level.

Command-Line Information
Parameter: -modules-precision
Value: file:O0 | file:O1 | file:O2 | file:O3
Example: polyspace-code-prover-nodesktop -sources file_name -O1 -
modules-precision My_File.c:02

See Also
“Precision level (C/C++)” on page 1-113

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

1 Option Descriptions

1-126

Optimize large static initializers (C/C++)

Specify that the verification must approximate statically initialized int, float and
char arrays if required. If you do not specify this option, for static initialization of large
arrays, scaling problems can occur during the compilation phase. This option is available
on the Scaling node in the Configuration pane.

Settings

Default: Off

 On
The verification approximates statically initialized int, float and char arrays if
required. Using this option can speed up verification, but can decrease precision for
some applications.

 Off
The verification does not approximate statically initialized int, float and char
arrays.

Command-Line Information
Parameter: -no-fold
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -no-fold

Related Examples
• “Specify Analysis Options”

 Inline (C/C++)

1-127

Inline (C/C++)

Specify the functions that the verification must clone for every function call. For instance,
if you specify the function func for inlining and func is called twice, the software
creates two copies of func for verification. The copies are named using the convention
func_pst_inlined_ver where ver is the version number. This option is available on
the Scaling node in the Configuration pane.

Settings

No Default

Click to enter function name.

Tips

• Use this option to identify the cause of a Non-terminating call error.

• Situation: Sometimes, a red Non-terminating call check can appear on a
function call though a red check does not appear in the function body. The function
body represents all calls to the function. Therefore, if some calls to a function do
not cause an error, an orange check appears in the function body.

• Action: If you use this option, for every function call, there is a corresponding
function body. Therefore, you can trace a red check on a function call to a red check
in the function body.

• Using this option can sometimes duplicate a lot of code and lead to scaling problems.
Therefore choose functions to inline carefully.

• Choose functions to inline based on hints provided by the alias verification.
• Do not use this option for entry point functions, including main.
• Using this option can increase the number of gray Unreachable code checks.

For example, in the following code, if you enter max for Inline, you obtain two
Unreachable code checks, one for each call to max.

int max(int a, int b) {

 return a > b ? a : b;

}

1 Option Descriptions

1-128

void main() {

 int i=3, j=1, k;

 k=max(i,j);

 i=0;

 k=max(i,j);

}

• If you use the keyword inline before a function definition, place the definition in a
header file and call the function from multiple source files, you have the same result
as using the option Inline.

• For C++ code, this option applies to all overloaded methods of a class.

Command-Line Information
Parameter: -inline
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -inline
func1,func2

Related Examples
• “Specify Analysis Options”
• “Reduce Procedure Complexity”

 Depth of verification inside structures (C/C++)

1-129

Depth of verification inside structures (C/C++)

Specify a limit to the depth of analysis for nested structures. This option is available on
the Scaling node in the Configuration pane.

Settings

Default: Full depth of nested structures is analyzed.

Enter a number to specify the depth of analysis for nested structures. For instance, if you
specify 0, the analysis does not verify a structure inside a structure.

If you specify a number less than 2, the verification could take longer or be less precise.

Command-Line Information
Parameter: -k-limiting
Value: positive integer
Default: polyspace-code-prover-nodesktop -sources file_name -k-
limiting 3

Related Examples
• “Specify Analysis Options”

1 Option Descriptions

1-130

Generate report (C/C++)

Specify whether to generate a report after the analysis. This option is available on the
Reporting node in the Configuration pane.

Depending on the format you specify, you can view this report using an external
software. For example, if you specify the format PDF, you can view the report in a pdf
reader.

Settings

Default: Off

 On
Polyspace generates an analysis report using the template and format you specify.

 Off
Polyspace does not generate an analysis report. You can still view your results in the
Polyspace interface.

Tips

• To generate a report after an analysis is complete, select Reporting > Run Report.
Alternatively, at the command line, use the command polyspace-report-
generator with the options -template and -format.

Command-Line Information

There is no command-line option to solely turn on the report generator. However, using
the options -report-template for template and -report-output-format for output
format automatically turns on the report generator.

See Also
“Report template (C/C++)” on page 1-132 | “Output format (C/C++)” on page 1-136

Related Examples
• “Specify Analysis Options”

 Generate report (C/C++)

1-131

• “Generate Report”

1 Option Descriptions

1-132

Report template (C/C++)

Specify template for generating analysis report. This option is available on the
Reporting node in the Configuration pane.

.rpt files for the report templates are available in the folder
MATLAB_Install\polyspace\toolbox\psrptgen\templates\.

Settings

Default: Developer

CallHierarchy

The report displays the call hierarchy in your source code. For each function call in
your source code, the report displays the following information:

• Level of call hierarchy, where the function is called.

Each level is denoted by |. If a function call appears in the table as |||->
file_name.function_name, the function call occurs at the third level of the
hierarchy. Beginning from main or an entry point, there are three function calls
leading to the current call.

• File containing the function call.

In addition, the line and column is also displayed.
• File containing the function definition.

In addition, the line and column where the function definition begins is also
displayed.

In addition, the report also displays uncalled functions.

This report captures the information available on the Call Hierarchy pane in the
Polyspace user interface.

CodeMetrics

The report contains a summary of code metrics, followed by the complete metrics for
an application.

CodingRules

For C code, the report lists information about compliance with:

 Report template (C/C++)

1-133

• MISRA C rules
• MISRA AC AGC rules
• Custom coding rules

For C++ code, the report lists information about compliance with:

• MISRA C++ rules
• JSF® C++ rules
• Custom coding rules

This report also contains the Polyspace configuration settings for the analysis. An
additional section states all rules along with the information whether they were
enabled or disabled.

Developer

The report lists information useful to developers, including:

• Summary of results
• Coding rule violations
• List of proven run-time errors or red checks
• List of unproven run-time errors or orange checks
• List of unreachable procedures or gray checks

The report also contains the Polyspace configuration settings for the analysis.
DeveloperReview

The report lists the same information as the Developer report. However, the
reviewed results are sorted by severity and status, and unreviewed results are sorted
by file location.

Developer_withGreenChecks

The report lists the same information as the Developer report. In addition, the
report lists code proven to be error-free or green checks.

Quality

The report lists information useful to quality engineers, including:

• Summary of results
• Statistics about the code
• Graphs showing distributions of checks per file

1 Option Descriptions

1-134

The report also contains the Polyspace configuration settings for the analysis.
SoftwareQualityObjectives

The report lists information useful to quality engineers and available on the
Polyspace Metrics interface, including:

• Information about whether the project satisfies quality objectives
• Time taken in each phase of verification
• Metrics about the whole project. For each metric, the report lists the quality

threshold and whether the metric satisfies this threshold.
• Coding rule violations in the project. For each rule, the report lists the number of

violations justified and whether the justifications satisfy quality objectives.
• Definite as well as possible run-time errors in the project. For each type of

run-time error, the report lists the number of errors justified and whether the
justifications satisfy quality objectives.

The appendices contain further details of Polyspace configuration settings, code
metrics, coding rule violations, and run-time errors.

SoftwareQualityObjectives_Summary

The report contains the same information as the SoftwareQualityObjectives
report. However, it does not have the supporting appendices with details of code
metrics, coding rule violations and run-time errors.

VariableAccess

The report displays the global variable access in your source code. The report first
displays the number of global variables of each type. For information on the types,
see “Global Variables”. For each global variable, the report displays the following
information:

• Variable name.

The entry for each variable is denoted by |.
• Type of the variable.
• Number of read and write operations on the variable.
• Details of read and write operations. For each read or write operation, the table

displays the following information:

• File and function containing the operation in the form
file_name.function_name.

 Report template (C/C++)

1-135

The entry for each read or write operation is denoted by ||. Write operations
are denoted by < and read operations by >.

• Line and column number of the operation.

This report captures the information available on the Variable Access pane in the
Polyspace user interface.

Dependencies

• This option is enabled only if you select the Generate report box.
• The templates SoftwareQualityObjectives and

SoftwareQualityObjectives_Summary are available only if you generate a report
from results downloaded from the Polyspace Metrics web dashboard. To generate
these reports:

1 Download results from the Polyspace Metrics dashboard.
2 Select Reporting > Run Report.
3 Select the template that you want.

Command-Line Information
Parameter: -report-template
Value: Full path to template.rpt
Example: polyspace-code-prover-nodesktop -sources file_name -
report-template matlabroot\polyspace\toolbox\psrptgen\templates

\Developer.rpt

Here, matlabroot is the MATLAB installation folder such as C:\Program Files
\MATLAB\R2015a.

See Also
“Generate report (C/C++)” on page 1-130 | “Output format (C/C++)” on page 1-136

Related Examples
• “Specify Analysis Options”
• “Generate Report”
• “Customize Report Templates”

1 Option Descriptions

1-136

Output format (C/C++)

Specify output format of generated report. This option is available on the Reporting
node in the Configuration pane.

Settings

Default: Word

HTML

Generate report in .html format
PDF

Generate report in .pdf format
Word

Generate report in .docx format. Not available on UNIX® platforms.

Tips

If the table of contents or graphics in a .docx report appear outdated, select the content
of the report and refresh the document. Use keyboard shortcuts Ctrl+A to select the
content and F9 to refresh it.

Dependencies

This option is enabled only if you select the Generate report box.

Command-Line Information
Parameter: -report-output-format
Value: html | pdf | word
Default: word
Example: polyspace-code-prover-nodesktop -sources file_name -report-
output-format pdf

See Also
“Generate report (C/C++)” on page 1-130 | “Report template (C/C++)” on page 1-132

 Output format (C/C++)

1-137

Related Examples
• “Specify Analysis Options”
• “Generate Report”
• “Customize Report Templates”

1 Option Descriptions

1-138

Batch (C/C++)

Enable or disable batch remote analysis. This option is available on the Distributed
Computing node in the Configuration pane.

For batch remote analysis, you need:

• Polyspace and MATLAB Distributed Computing Server™ on the cluster
• MATLAB, Polyspace and Parallel Computing Toolbox™ on your local computer

Settings

Default: Off

 On
Run batch analysis on a remote computer. In this remote analysis mode, the analysis
is queued on a cluster after the compilation phase. Therefore, on your local computer,
after the analysis is queued:

• If you are running the analysis from the Polyspace user interface, you can close
the user interface.

• If you are running the analysis from the command line, you can close the
command-line window.

You can manage the queue from the Polyspace Job Monitor. To use the Polyspace Job
Monitor:

• In the Polyspace user interface, select Tools > Open Job Monitor.
• On the DOS or UNIX command line, use the polyspace-jobs-manager

command. For more information, see “Run Remote Analysis at Command Line”.
• On the MATLAB command line, use the polyspaceJobsManager function.

After the analysis, you might have to manually download the results from the
cluster.

 Off
Do not run batch analysis on a remote computer.

 Batch (C/C++)

1-139

Dependency

Do not use Batch mode with the Verification Level options C source compliance
checking or C++ source compliance checking. The source compliance checking
or compilation phase always takes place on your local computer. Therefore, if you are
running verification only up to this phase, run verification on your local computer.

Command-Line Information

To run a remote verification from the command line, use with the -scheduler option.
Parameter: -batch
Value: -scheduler host_name if you have not set the Job scheduler host name in
the Polyspace user interface
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost
polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost

See Also
“Add to results repository (C/C++)” on page 1-140 | -scheduler

Related Examples
• “Specify Analysis Options”
• “Set Up Server for Metrics and Remote Analysis”
• “Run Remote Verification”
• “Run Remote Analysis at Command Line”

1 Option Descriptions

1-140

Add to results repository (C/C++)

Specify upload of analysis results to the Polyspace Metrics results repository, allowing
Web-based reporting of results and code metrics. This option is available on the
Distributed Computing node in the Configuration pane.

Settings

Default: Off

 On
Analysis results are stored in the Polyspace Metrics results repository. This allows
you to use a Web browser to view results and code metrics.

 Off
Analysis results are stored locally.

Dependency

This option is only available for remote verifications. For local verification, you can
manually upload your results to Polyspace Metrics by right-clicking on your results file
and selecting Upload to Metrics.

Command-Line Information
Parameter: -add-to-results-repository
Default: Off
Example: polyspace-code-prover-nodesktop -batch -scheduler NodeHost -
add-to-results-repository

See Also
“Set Up Server for Metrics and Remote Analysis” | “Set Up Polyspace Metrics” |
“Generate Code Quality Metrics” | “Batch (C/C++)” on page 1-138

Related Examples
• “Run Remote Verification”
• “Generate Code Quality Metrics”

 Calculate Code Metrics (C/C++)

1-141

Calculate Code Metrics (C/C++)

Specify that Polyspace must compute and display code complexity metrics for your source
code. For more information, see “Code Metrics”.

Settings

Default: Off

 On
Polyspace computes and displays code complexity metrics on the Results Summary
pane.

 Off
Polyspace does not compute complexity metrics.

Command-Line Information
Parameter: -code-metrics
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -code-
metrics

1 Option Descriptions

1-142

Command/script to apply after the end of the code verification (C/
C++)

Specify a command or script to be executed after the verification. This option is available
on the Advanced Settings node in the Configuration pane.

Settings

No Default

Enter full path to the command or script, or click to navigate to the location of the
command or script. After the verification, this script will be executed.

For a Perl script, in Windows, specify the full path to the Perl executable followed by
the full path to the script. For example, to specify a Perl script send_email.pl that
sends an email once verification is over, enter matlabroot\sys\perl\win32\bin
\perl.exe <absolute_path>\send_email.pl. Here, matlabroot is the location of
the current MATLAB installation such as C:\Program Files\MATLAB\R2015b\ and
<absolute_path> is the location of the Perl script.

Command-Line Information
Parameter: -post-analysis-command
Value: Path to executable file or command in quotes
No Default
Example in Linux: polyspace-code-prover-nodesktop -sources file_name -
post-analysis-command `pwd`/send_email.pl

Example in Windows: polyspace-code-prover-nodesktop -sources
file_name -post-analysis-command "C:\Program Files\MATLAB\R2015b\sys

\perl\win32\bin\perl.exe" "C:\My_Scripts\send_email.pl"

See Also
“Command/script to apply to preprocessed files (C/C++)” on page 1-27

Related Examples
• “Specify Analysis Options”

 Automatic Orange Tester (C)

1-143

Automatic Orange Tester (C)

Specify that the Automatic Orange Tester must be executed at the end of the verification.
This option is available on the Advanced Settings node in the Configuration pane.

You must select this option before verification if you want to run the Automatic Orange
Tester after verification. During verification, Polyspace generates additional source
code that tests each orange check for run-time errors. The software compiles this
instrumented code. When you run the Automatic Orange Tester later, the software tests
the resulting binary code.

Settings

Default: Off

 On
After verification, when you run the Automatic Orange Tester, Polyspace creates
tests for unproven code and runs them.

 Off
You cannot launch the Automatic Orange Tester after verification.

Tips

• To launch the Automatic Orange Tester, after verification, open your results. Select
Tools > Automatic Orange Tester.

• When using the automatic orange tester, you cannot:

• Select Division round down under Target & Compiler.
• Select the options c18, tms320c3c. x86_64 or sharc21x61 for Target &

Compiler > Target processor type.
• Specify the type char as 16-bit or short as 8-bit using the option mcpu...

(Advanced) for Target & Compiler > Target processor type. For the same
option, you must specify the type pointer as 32-bit.

• Specify global asserts in the code, having the form Pst_Global_Assert(A,B). In
global assert mode, you cannot use Constraint setup under Inputs & Stubbing.

1 Option Descriptions

1-144

Command-Line Information
Parameter: -automatic-orange-tester
Default: Off
Example: polyspace-code-prover-nodesktop -sources file_name -
automatic-orange-tester

See Also
“Number of automatic tests (C)” on page 1-145 | “Maximum loop iterations (C)” on
page 1-146 | “Maximum test time (C)” on page 1-147

Related Examples
• “Specify Analysis Options”
• “Test Orange Checks for Run-Time Errors”

More About
• “Limitations of Automatic Orange Tester”

 Number of automatic tests (C)

1-145

Number of automatic tests (C)

Specify number of tests that you want the Automatic Orange Tester to run. The more
the number of tests, the greater the possibility of finding a run-time error, but longer
it takes to complete. This option is available on the Advanced Settings node in the
Configuration pane.

Settings

Default: 500

Enter number of tests up to a maximum of 100,000.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information
Parameter: -automatic-orange-tester-tests-number
Value: positive integer
Default: 500
Example: polyspace-code-prover-nodesktop -sources file_name -
automatic-orange-tester -automatic-orange-tester-tests-number 500

See Also
“Automatic Orange Tester (C)” on page 1-143 | “Maximum loop iterations (C)” on page
1-146 | “Maximum test time (C)” on page 1-147

Related Examples
• “Specify Analysis Options”
• “Test Orange Checks for Run-Time Errors”

1 Option Descriptions

1-146

Maximum loop iterations (C)

Specify number of loop iterations after which the Automatic Orange Tester considers the
loop to be infinite. Specifying a large number decreases the possibility of identifying an
infinite loop incorrectly, but takes more time to complete. This option is available on the
Advanced Settings node in the Configuration pane.

Settings

Default: 1000

Enter number of loop iterations. The maximum value that the software supports is 1000.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information
Parameter: -automatic-orange-tester-loop-max-iteration
Value: positive integer
Default: 1000
Example: polyspace-code-prover-nodesktop -sources file_name -
automatic-orange-tester -automatic-orange-tester-loop-max-iteration

500

See Also
“Automatic Orange Tester (C)” on page 1-143 | “Number of automatic tests (C)” on page
1-145 | “Maximum test time (C)” on page 1-147

Related Examples
• “Specify Analysis Options”
• “Test Orange Checks for Run-Time Errors”

 Maximum test time (C)

1-147

Maximum test time (C)

Specify time in seconds allowed for a single test. After this time is over, the Automatic
Orange Tester proceeds to the next test. Increasing this time reduces number of tests
that do not complete, but increases total verification time. This option is available on the
Advanced Settings node in the Configuration pane.

Settings

Default: 5

Enter time in seconds. The maximum value that the software supports is 60.

Dependencies

This option is enabled only if you select the Automatic Orange Tester box.

Command-Line Information
Parameter: -automatic-orange-tester-timeout
Value: time
Default: 5
Example: polyspace-code-prover-nodesktop -sources file_name -
automatic-orange-tester -automatic-orange-tester-test-timeout 10

See Also
“Automatic Orange Tester (C)” on page 1-143 | “Number of automatic tests (C)” on page
1-145 | “Maximum loop iterations (C)” on page 1-146

Related Examples
• “Specify Analysis Options”
• “Test Orange Checks for Run-Time Errors”

1 Option Descriptions

1-148

Other (C)

In this section...

“-extra-flags” on page 1-148
“-c-extra-flags” on page 1-148
“-cfe-extra-flags” on page 1-148
“-il-extra-flags” on page 1-149

Specify special options for C verification, which are provided by MathWorks if required.
This option is available on the Advanced Settings node in the Configuration pane.

-extra-flags

No Default

Example:

 polyspace-code-prover-nodesktop -extra-flags -param1 -extra-flags -

param2 \

 -extra-flags 10 ...

-c-extra-flags

No Default

Example:

polyspace-code-prover-nodesktop -c-extra-flags -param1 -c-extra-

flags -param2 -c-extra-flags 10

-cfe-extra-flags

No Default

Example:

polyspace-code-prover-nodesktop -cfe-extra-flags -param1 -cfe-extra-

flags -param2

 Other (C)

1-149

-il-extra-flags

No Default

Example:

polyspace-code-prover-nodesktop -il-extra-flags -param1 -il-extra-

flags -param2 -il-extra-flags 10

2

Option Descriptions specific to C++
Code

• “Dialect (C++)” on page 2-3
• “C++11 Extensions (C++)” on page 2-8
• “Block char16/32_t types (C++)” on page 2-9
• “Pack alignment value (C++)” on page 2-10
• “Ignore pragma pack directives (C++)” on page 2-11
• “Import folder (C++)” on page 2-12
• “Management of scope of 'for loop' variable index (C++)” on page 2-13
• “Management of wchar_t (C++)” on page 2-14
• “Set wchar_t to unsigned long (C++)” on page 2-15
• “Set size_t to unsigned long (C++)” on page 2-16
• “Ignore link errors (C++)” on page 2-17
• “Check MISRA C++ rules” on page 2-18
• “Check JSF C++ rules” on page 2-20
• “Files and folders to ignore (C++)” on page 2-22
• “Main entry point (C++)” on page 2-24
• “Verify module (C++)” on page 2-26
• “Class (C++)” on page 2-28
• “Functions to call within the specified classes (C++)” on page 2-30
• “Analyze class contents only (C++)” on page 2-32
• “Skip member initialization check (C++)” on page 2-34
• “Functions to call (C++)” on page 2-35
• “Variables to initialize (C++)” on page 2-37
• “Initialization functions (C++)” on page 2-39

2 Option Descriptions specific to C++ Code

2-2

• “Parameters (C++)” on page 2-41
• “Inputs (C++)” on page 2-43
• “Initialization functions (C++)” on page 2-45
• “Step functions (C++)” on page 2-46
• “Termination functions (C++)” on page 2-48
• “No STL stubs (C++)” on page 2-50
• “Functions to stub (C++)” on page 2-51
• “Tuning Precision and Scaling Parameters” on page 2-53
• “Verification level (C++)” on page 2-55
• “Other (C++)” on page 2-57

 Dialect (C++)

2-3

Dialect (C++)

Allow syntax associated with C++ language extensions. This option is available on the
Target & Compiler node in the Configuration pane.

Settings

Default: none

none

Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

gnu3.4

Analysis allows GCC 3.4 dialect syntax.
gnu4.6

Analysis allows GCC 4.6 dialect syntax.
gnu4.7

Analysis allows GCC 4.7 dialect syntax.

For more information, see “Limitations” on page 2-5.
gnu4.8

Analysis allows GCC 4.8 dialect syntax.

For more information, see “Limitations” on page 2-5.
gnu4.9

Analysis allows GCC 4.9 dialect syntax.

For more information, see “Limitations” on page 2-5.
clang3.5

Analysis allows Clang 3.5 dialect syntax.

The Clang __attribute__(vector_size()) is not supported.
iso

Analysis allows for ISO/IEC 14882:2003 C++ (C++ 2003) syntax.

2 Option Descriptions specific to C++ Code

2-4

If you want to allow ISO/IEC 14882:2011 C++ (C++ 2011) syntax, also select C++ 11
extensions.

visual

Analysis allows Microsoft Visual C++ .NET 2003 syntax.
visual6

Analysis allows Microsoft Visual C++ 6.0 (VC6) syntax.
visual7.0

Analysis allows Microsoft Visual C++ .NET 2002 syntax.
visual7.1

Analysis allows Microsoft Visual C++ .NET 2003 syntax.
visual8

Analysis allows Microsoft Visual C++ 2005 syntax.
visual9.0

Analysis allows Microsoft Visual C++ 2008 syntax.
visual10

Analysis allows Microsoft Visual C++ 2010 syntax.

This option automatically adds the option -no-stl-stubs.
visual11.0

Analysis allows Microsoft Visual C++ 2012 syntax.

This option automatically adds the option -no-stl-stubs.
visual12.0

Analysis allows Microsoft Visual C++ 2013 syntax.

This option automatically adds the option -no-stl-stubs.

Dependencies

This parameter depends on the value of Target operating system. The dialect options
work only with the applicable operating systems. You can use every dialect with the
Target operating system option, no-predefined-OS.

If you enable Check JSF C++ Rules with a dialect other than iso or none, Polyspace
cannot completely check some JSF coding rules. For example, AV Rule 8: “All code shall
conform to ISO/IEC 14882:2002(E) standard C++.”

 Dialect (C++)

2-5

Limitations

Polyspace does not support certain aspects of the GNU dialects 4.7 and later. These
limitations can cause compilation errors or incomplete results.

• Priority attributes — Not supported, ignores priorities and uses standard
initialization instead.

Example

#include <stdio.h>

struct A{

 int a;

 A():a(1) {

 fprintf(stderr, "A constructor\n");

 }

};

struct B{

 int b;

 B():b(1) {

 fprintf(stderr, "B constructor\n");

 }

};

A a __attribute__((init_priority (100)));

B b __attribute__((init_priority (50)));

The expected output from the above code is:

B constructor

A constructor

However, Polyspace preserves the standard initialization. So the actual output is:

A constructor

B constructor

Workaround: To use the desired priority, change the order of the declarations to
match the desired order.

• Vector types and attributes — Not supported.
• Visibility attributes — Not supported, ignored.

2 Option Descriptions specific to C++ Code

2-6

This limitation can cause C++ linkage problems in Polyspace Code Prover.

Workaround: Remove all attributes during preprocessing,

• At the command line, use the option -D __attribute__(x)=.
• In the Polyspace environment, in Macros > Preprocessor definitions, add a

row: __attribute__(x)=.
• Complex types — Only floating complex types supported, integral complex types

cause an error.
• Using built-in library function on complex types — Not supported, stubbed

during analysis. Calls to these functions return variables with full ranges.

Workaround: To make the analysis more precise, add an include file that defines the
functions for complex variables.

• Computed goto — Not supported.

This type of goto causes an error in Code Prover. To ignore the computed gotos, stub
the functions containing the computed gotos:

• At the command line, use the option -functions-to-stub funcList where
funcList is the list of functions containing the computed gotos.

• In the Polyspace environment, in the Inputs & Stubbing > Functions to stub

table, use the button to add a row for each function containing the computed
gotos.

• Nested functions — Not supported, causes an error.
• Using built-in library functions on atomic operators — Not supported,

Polyspace stubs the functions. This limitation can cause imprecise results.
• IEEE floating point library functions — Limited support, can cause imprecise

results.

This limitation includes isnan, isnanf, isnanl, isinf, isinff, isinfl,
isnormal, and isfinite.

Workaround: In each of your source files, include a file containing the function
definitions or declarations:

• At the command line, use the option -include filename.

 Dialect (C++)

2-7

•
In the Polyspace environment, in Environment Settings > Include, use the
button to add a row for your definition/declaration file.

Command-Line Information
Parameter: -dialect
Value: none | gnu3.4 | gnu4.6 | gnu4.7 | gnu4.8 | gnu4.9 | iso |
clang3.5 | visual | visual6 | visual7.0 | visual7.1 | visual8 |

visual9.0 | visual10 | visual11.0 | visual12.0

Default: none
Example: polyspace-code-prover-nodesktop -lang cpp -sources
"file1.cpp,file2.cpp" -OS-target Visual -dialect visual7.1

See Also
“Target operating system (C/C++)” on page 1-4 | “Target processor type (C/C++)” on page
1-6 | “C++11 Extensions (C++)” on page 2-8 | “Block char16/32_t types (C++)” on
page 2-9

More About
• “Supported C++ 2011 Extensions”

2 Option Descriptions specific to C++ Code

2-8

C++11 Extensions (C++)

Allow for C++11 language extensions. This option is available on the Target &
Compiler node in the Configuration pane.

If your code uses any C++11 language constructs, select this option to allow this syntax
during your analysis.

Settings

Default: Off

 Off
The analysis does not allow C++11 syntax.

 On
The analysis allows C++11 syntax.

Dependencies

You can only select this option when the Dialect option is none, gnu4.6, or gnu4.7.

Command-Line Information
Parameter: -cpp11-extension
Default: off
Example: polyspace-code-prover-nodesktop -lang cpp -cpp11-extension

See Also
“Dialect (C++)” on page 2-3 | “Block char16/32_t types (C++)” on page 2-9

More About
• “Supported C++ 2011 Extensions”

 Block char16/32_t types (C++)

2-9

Block char16/32_t types (C++)

The analysis does not allow char16_t or char32_t types. This option is available on the
Target & Compiler node in the Configuration pane.

If you have defined char16_t and/or char32_t through a typedef statement or using
includes, this option allows you to turn off the standard Polyspace definition of char16_t
and char32_t.

Settings

Default: Off

 Off
The analysis allows char16_t and char32_t types.

 On
The analysis does not allow char16_t and char32_t types.

Dependencies

You can only select this option when the Dialect option is either none or a gnu dialect.

Command-Line Information
Parameter: -no-uliterals
Default: off
Example: polyspace-code-prover-nodesktop -dialect gnu4.7 -lang cpp -
cpp11-extension -no-uliterals

See Also
“Dialect (C++)” on page 2-3 | “C++11 Extensions (C++)” on page 2-8

More About
• “Supported C++ 2011 Extensions”

2 Option Descriptions specific to C++ Code

2-10

Pack alignment value (C++)

Specify the default packing alignment for an analysis. This option is available on the
Target & Compiler node in the Configuration pane.

If an invalid value is given, analysis will halt and display an error message. with a bad
value or if this option is used in non visual mode (Target operating system Visual or
Dialect visual*).

Settings

Default: 8

• 1
• 2
• 4
• 8
• 16

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -pack-alignment-value
Value: 1 | 2 | 4 | 8 | 16
Default: 8
Example: polyspace-code-prover-nodesktop -lang cpp -pack-alignment-
value 4

 Ignore pragma pack directives (C++)

2-11

Ignore pragma pack directives (C++)

Specifies C++ #pragma packing alignment for structure, union, and class members. This
option is available on the Target & Compiler node in the Configuration pane.

Settings

Default: Off

 Off
Keeps C++ #pragma directives in the analysis

 On
Allows C++ #pragma directives to be ignored in order to prevent link errors

Analysis will halt and display an error message with a bad value or if this option is
used in non visual mode (Target operating system Visual or Dialect visual*).

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -ignore-pragma-pack
Default: Off
Example: polyspace-code-prover-nodesktop -lang cpp -ignore-pragma-
pack

2 Option Descriptions specific to C++ Code

2-12

Import folder (C++)

Specifies a single directory to be included by #import directive. This option is available
on the Target & Compiler node in the Configuration pane.

Settings

No default

Give the location of *.tlh files generated by a Visual Studio compiler when
encountering #import directive on *.tlb files.

Dependencies

This analysis option is available only when,

• Target operating system is set to no-predefined-OS or Visual.
• and Dialect is set to one of the visual* options.

Command-Line Information
Parameter: -import-dir
Value: File location
Example: polyspace-code-prover-nodesktop -OS-target Visual -dialect
visual8 -import-dir /com1/inc

 Management of scope of 'for loop' variable index (C++)

2-13

Management of scope of 'for loop' variable index (C++)

Specify the scope of the index variable declared within a for loop. This option is
available on the Target & Compiler node in the Configuration pane.

For example:
for (int index=0; ...){};

index++; // At this point, index variable is usable (out) or not (in)

This option allows the default behavior implied by the Polyspace -dialect option to be
overridden.

This option is equivalent to the Visual C++ options /Zc:forScope and Zc:forScope-.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected dialect
out

The index variable is usable outside the scope of the for loop.

Default behavior for the dialect options visual6, visual7 and visual 7.1
in

The index variable is not usable outside the scope of the for loop.

Default behavior for all other dialects, including visual8. The C++ standard
specifies that the index is treated as in.

Command-Line Information
Parameter: -for-loop-index-scope
Value: defined-by-dialect | out | in
Default: defined-by-dialect
Example: polyspace-code-prover-nodesktop -lang cpp -for-loop-index-
scope in

2 Option Descriptions specific to C++ Code

2-14

Management of wchar_t (C++)

Specify how to treat wchar_t. This option is available on the Target & Compiler node
in the Configuration pane.

This option is equivalent to the Visual C++ options /Zc:wchar and /Zc:wchar-.

Settings

Default: defined-by-dialect

defined-by-dialect

Default behavior specified by selected dialect
typedef

Use according to typedef statement specified by Microsoft Visual C++
6.0/7.0/7.1 dialects.

Default behavior for the dialect options visual6, visual7.0 and visual7.1
keyword

Use as a keyword as given by the C++ standard

Default behavior for all other dialects, including visual8.

Command-Line Information
Parameter: -wchar-t-is
Value: defined-by-dialect | typedef | keyword
Default: defined-by-dialect
Example: polyspace-code-prover-nodesktop -for-loop-index-scope
keyword

 Set wchar_t to unsigned long (C++)

2-15

Set wchar_t to unsigned long (C++)

Specify the underlying type of wchar_t to be unsigned long. This option is available on
the Target & Compiler node in the Configuration pane.

Settings

Default: Off

 Off
Use the default underlying type of wchar_t as defined by the dialect or the
Management of wchar_t option.

 On
Set the type of size_t to unsigned long, as defined in the C++ standard.

For example, sizeof(L'W') will have the value of sizeof(unsigned long) and
the wchar_t field will be aligned in the same way as the unsigned long field.

Command-Line Information
Parameter: -wchar-t-is-unsigned-long
Default: off
Example: polyspace-code-prover-nodesktop -lang cpp -wchar-t-is-
unsigned-long

2 Option Descriptions specific to C++ Code

2-16

Set size_t to unsigned long (C++)

Force the underlying type of size_t to be unsigned long. This option is available on
the Target & Compiler node in the Configuration pane. If you use this option, you
can only redefine size_t with a typedef statement to unsigned long.

For example, Polyspace applies the following typedef statement because the type is
unsigned long:

typedef unsigned long size_t;

However, Polyspace ignores this typedef statement, because the Set size_t to
unsigned long option allows only unsigned long.

typedef unsigned int size_t;

Settings

Default: Off

 Off
Use the default underlying type of size_t, unsigned int

 On
Set the type of size_t to unsigned long

Command-Line Information
Parameter: -size-t-is-unsigned-long
Default: off
Example: polyspace-code-prover-nodesktop -lang cpp -size-t-is-
unsigned-long

 Ignore link errors (C++)

2-17

Ignore link errors (C++)

Ignore linkage errors. This option is available on the Environment Settings node in the
Configuration pane.

Some functions may be declared inside an extern “C” { } block in some files and not
in others. Then, their linkage is not the same and it causes a link error according to the
ANSI standard.

Applying this option will cause Polyspace to ignore this error. This permissive option may
not resolve all the extern C linkage errors.

Settings

Default: Off

 Off
Stop analysis for linkage errors.

 On
Ignore the linkage errors if possible.

Command-Line Information
Parameter: -no-extern-C
Default: off
Example: polyspace-code-prover-nodesktop -lang cpp -no-extern-C

2 Option Descriptions specific to C++ Code

2-18

Check MISRA C++ rules

Specify whether to check for violation of MISRA C++ rules. Each value of the option
corresponds to a subset of rules to check. This option is available on the Coding Rules &
Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: required-rules

required-rules

Check required coding rules.
all-rules

Check required and advisory coding rules.
SQO-subset1

Check only a subset of MISRA C++ rules. In Polyspace Code Prover, observing
these rules can reduce the number of unproven results. For more information, see
“Software Quality Objective Subsets (C++)”.

SQO-subset2

Check a subset of rules including SQO-subset1 and some additional rules. In
Polyspace Code Prover, observing these rules can further reduce the number of
unproven results. For more information, see “Software Quality Objective Subsets (C+
+)”

custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

 Check MISRA C++ rules

2-19

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

9-5-1 off # rule 9-5-1: classes

15-0-2 on # rule 15-0-2: exception handling

Command-Line Information
Parameter: -misra-cpp
Value: required-rules | all-rules | SQO-subset1 | SQO-subset2 | file
Default: required-rules
Example: polyspace-code-prover-nodesktop -sources file_name -misra-
cpp all-rules

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace MISRA C++ Checker”
• “Software Quality Objective Subsets (C++)”
• “MISRA C++ Coding Rules”

2 Option Descriptions specific to C++ Code

2-20

Check JSF C++ rules

Specify whether to check for violation of JSF C++ rules (JSF++:2005). Each value of the
option corresponds to a subset of rules to check. This option is available on the Coding
Rules & Code Metrics node in the Configuration pane.

After analysis, the Results Summary pane lists the coding rule violations. On the
Source pane, for every coding rule violation, Polyspace assigns a symbol to the
keyword or identifier relevant to the violation.

Settings

Default: shall-rules

shall-rules

Check all Shall rules. Shall rules are mandatory requirements and require
verification.

shall-will-rules

Check all Shall and Will rules. Will rules are intended to be mandatory
requirements but do not require verification.

all-rules

Check all Shall, Will, and Should rules. Should rules are advisory rules.
custom

Specify coding rules to check. Click to create a coding rules file.

After creating and saving the file, to reuse it for another project, do one of the
following:

• Enter full path to the file in the space provided.
•

Click . Click to load the file.

Format of the custom file:

<rule number> off|on

Use # to enter comments in the file. For example:

67 off # rule 67: classes

 Check JSF C++ rules

2-21

202 on # rule 202: expressions

Tips

• If your project uses a dialect other than ISO, some rules might not be completely
checked. For example, AV Rule 8: “All code shall conform to ISO/IEC 14882:2002(E)
standard C++.”

Command-Line Information
Parameter: -jsf-coding-rules
Value: shall-rules | shall-will-rules | all-rules | file
Default: shall-rules
Example: polyspace-code-prover-nodesktop -sources file_name -jsf-
coding-rules all-rules

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

More About
• “Polyspace JSF C++ Checker”
• “JSF C++ Coding Rules”

2 Option Descriptions specific to C++ Code

2-22

Files and folders to ignore (C++)

Specify files and folders to ignore during coding rules checking. This option is available
on the Inputs & Stubbing node in the Configuration pane.

The files and folders are not ignored during Code Prover verification.

Settings

Default: all-headers

all-headers

Ignores .h or .hpp files
all

Ignores all files in include folders
custom

Ignore include files and folders that you specify in the File/Folder view. To add files

to the custom File/Folder list, select to choose the files and folders to exclude.
To remove a file or folder from the list of excluded files and folders, select the row.

Then click .

Dependencies

This option is enabled only if you select one of the options Check MISRA C++ rules,
Check JSF C++ rules or Check custom rules.

Command-Line Information
Parameter: -includes-to-ignore
Value: all-headers | all | file1[,file2[,...]] | folder1[,folder2[,...]]
Default: all-headers
Example: polyspace-code-prover-nodesktop -lang cpp -sources file_name
-jsf-coding-rules required-rules -includes-to-ignore "C:\usr

\include"

 Files and folders to ignore (C++)

2-23

See Also
“Check MISRA C++ rules” on page 2-18 | “Check JSF C++ rules” on page 2-20 | “Check
custom rules (C/C++)” on page 1-60

Related Examples
• “Specify Analysis Options”
• “Set Up Coding Rules Checking”

2 Option Descriptions specific to C++ Code

2-24

Main entry point (C++)

Specify the function that you want to use as main. If the function does not exist, the
verification stops with an error message. Use this option to specify Microsoft Visual C+
+ extensions of main. This option is available on the Code Prover Verification node in
the Configuration pane.

Settings

Default: _tmain

_tmain

Use _tmain as entry point to your code.
wmain

Use wmain as entry point to your code.
_tWinMain

Use _tWinMain as entry point to your code.
wWinMain

Use wWinMain as entry point to your code.
WinMain

Use WinMain as entry point to your code.
DllMain

Use DllMain as entry point to your code.

Dependencies

This option is enabled only when you select:

• Visual for Target & Compiler > Target operating system
• Code Prover Verification > Verify whole application

Command-Line Information
Parameter: -main
Value: _tmain | wmain | _tWinMain | wWinMain | WinMain | DllMain

 Main entry point (C++)

2-25

Example: polyspace-code-prover-nodesktop -sources file_name -OS-
target visual -main _tmain

See Also
“Verify module (C++)” on page 2-26

Related Examples
• “Specify Analysis Options”

2 Option Descriptions specific to C++ Code

2-26

Verify module (C++)

Specify that Polyspace must generate a main function during verification if it does not
find one in the source files. This option is available on the Code Prover Verification
node in the Configuration pane.

Settings

Default: On

 On
Polyspace generates a main function if it does not find one in the source files. The
generated main:

1 Initializes variables specified by Variables to initialize.
2 Calls functions specified by Initialization functions ahead of other functions.
3 Calls functions specified by Functions to call in arbitrary order.
4 Calls class methods specified by Class and Functions to call within the

specified classes.

If you do not specify the above options explicitly, the generated main:

• Initializes all global variables except those declared with keywords const and
static.

• Calls in arbitrary order all functions and class methods that are not called
anywhere in the source files. Polyspace considers that global variables can be
written between two consecutive function or methods calls. Therefore, in each
called function or method, global variables initially have the full range of values
allowed by their type.

 Off
Polyspace stops verification if it does not find a main function in the source files.

Command-Line Information
Parameter: -main-generator
Default: Off

 Verify module (C++)

2-27

Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator ...

See Also
“Variables to initialize (C++)” on page 2-37 | “Functions to call (C++)” on page
2-35 | “Initialization functions (C++)” on page 2-45 | “Class (C++)” on page
2-28 | “Functions to call within the specified classes (C++)” on page 2-30

Related Examples
• “Specify Analysis Options”
• “Verify C++ Classes”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Generate main Function”
• “Main Generation for Model Verification”

2 Option Descriptions specific to C++ Code

2-28

Class (C++)

Specify classes that Polyspace uses to generate a main. This option is available on the
Code Prover Verification node in the Configuration pane.

Settings

Default: all

all

Polyspace can use all classes to generate a main. The generated main calls methods
that you specify using Functions to call within the specified classes.

none

The generated main cannot call any class method.
custom

Polyspace can use classes that you specify to generate a main. The generated main
calls methods from classes that you specify using Functions to call within the
specified classes.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Tips

If you select none for this option, Polyspace will not verify class methods that you do not
call explicitly in your code.

Command-Line Information
Parameter: -class-analyzer
Value: all | none | custom=class1[,class2,...]
Default: all
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2

 Class (C++)

2-29

See Also
“Verify module (C++)” on page 2-26 | “Functions to call within the specified classes (C
++)” on page 2-30 | “Analyze class contents only (C++)” on page 2-32 | “Skip
member initialization check (C++)” on page 2-34

Related Examples
• “Specify Analysis Options”
• “Verify C++ Classes”

2 Option Descriptions specific to C++ Code

2-30

Functions to call within the specified classes (C++)

Specify class methods that Polyspace uses to generate a main. The generated main
can call static, public and protected methods in classes that you specify using the
Class option. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: unused

all

The generated main calls all public and protected methods. It does not call methods
inherited from a parent class.

all-public

The generated main calls all public methods. It does not call methods inherited from
a parent class.

inherited-all

The generated main calls all public and protected methods including those inherited
from a parent class.

inherited-all-public

The generated main calls all public methods including those inherited from a parent
class.

unused

The generated main calls public and protected methods that are not called in the
code.

unused-public

The generated main calls public methods that are not called in the code. It does not
call methods inherited from a parent class.

inherited-unused

The generated main calls public and protected methods that are not called in the
code including those inherited from a parent class.

inherited-unused-public

The generated main calls public methods that are not called in the code including
those inherited from a parent class.

 Functions to call within the specified classes (C++)

2-31

custom

The generated main calls the methods that you specify.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Command-Line Information
Parameter: -class-analyzer-calls
Value: all | all-public | inherited-all | inherited-all-public |
unused | unused-public | inherited-unused | inherited-unused-public |
custom=method1[,method2,...]

Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -class-analyzer custom=myClass1,myClass2 -class-analyzer-

calls unused-public

See Also
“Verify module (C++)” on page 2-26 | “Class (C++)” on page 2-28 | “Analyze class
contents only (C++)” on page 2-32 | “Skip member initialization check (C++)” on page
2-34

Related Examples
• “Specify Analysis Options”
• “Verify C++ Classes”

2 Option Descriptions specific to C++ Code

2-32

Analyze class contents only (C++)
Specify that Polyspace must verify only methods of classes that you specify using the
Class option. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: Off

 On
Polyspace verifies the class methods only. It stubs functions out of class scope even if
the functions are defined in your code.

 Off
Polyspace verifies functions out of class scope in addition to class methods.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function. If you select this option,
you must specify the classes using the Class option.

Tips

Use this option:

• For robustness verification of class methods. Unless you use this option, Polyspace
verifies methods that you call in your code only for your input combinations.

• In case of scaling.

Command-Line Information
Parameter: -class-only
Default: Off

See Also
“Verify module (C++)” on page 2-26 | “Class (C++)” on page 2-28 | “Functions to call
within the specified classes (C++)” on page 2-30 | “Skip member initialization check (C+
+)” on page 2-34

 Analyze class contents only (C++)

2-33

Related Examples
• “Specify Analysis Options”
• “Verify C++ Classes”

2 Option Descriptions specific to C++ Code

2-34

Skip member initialization check (C++)
Specify that Polyspace must not check whether each class constructor initializes all
class members. This option is available on the Code Prover Verification node in the
Configuration pane.

Settings

Default: Off

 On
Polyspace does not check whether each class constructor initializes all class
members.

 Off
Polyspace checks whether each class constructor initializes all class members. It uses
the functions check_NIV() and check_NIP() in the generated main to perform
these checks. It checks for initialization of:

• Integer types such as int, char and enum, both signed or unsigned.
• Floating-point types such as float and double.
• Pointers.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function. If you select this option,
you must specify the classes using the Class option.

Command-Line Information
Parameter: -no-constructors-init-check
Default: Off

See Also
“Verify module (C++)” on page 2-26 | “Class (C++)” on page 2-28

Related Examples
• “Specify Analysis Options”

 Functions to call (C++)

2-35

Functions to call (C++)

Specify functions that you want the generated main to call. You can use this option only
to specify functions that are not members of a class. This option is available on the Code
Prover Verification node in the Configuration pane.

Settings

Default: unused

none

The generated main does not call any function.
unused

The generated main calls only those functions that are not being called in the source
code. It does not call inlined functions.

all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify. Click to enter function name.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Tips

• Select unused when you use the option Run unit by unit verification.
• If you want the generated main to call an inlined function, select custom and specify

the function name.
• Select none:

• If you do not want to verify uncalled functions. For applications that are not
multitasking, Polyspace cannot verify a function unless it can be reached from
main.

2 Option Descriptions specific to C++ Code

2-36

• To verify a multitasking application without a main.

Command-Line Information
Parameter: -main-generator-calls
Value: none | unused | all | custom=function1[,function2[,...]]
Default: unused
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-calls unused

See Also
“Verify module (C++)” on page 2-26 | “Variables to initialize (C++)” on page 2-37
| “Initialization functions (C++)” on page 2-39 | “Class (C++)” on page 2-28 |
“Functions to call within the specified classes (C++)” on page 2-30 | “Analyze class
contents only (C++)” on page 2-32

Related Examples
• “Specify Analysis Options”

 Variables to initialize (C++)

2-37

Variables to initialize (C++)

Specify global variables that you want the generated main to initialize. This option is
available on the Code Prover Verification node in the Configuration pane.

If you use the generated main to initialize a global variable, inside a function, before the
first write operation on the variable, Polyspace considers it to have any value allowed by
its type.

Settings

Default: uninit

uninit

The generated main only initializes global variables that you have not initialized
during declaration.

none

The generated main does not initialize global variables.
public

The generated main initializes all global variables except those declared with the
keywords static and const.

all

The generated main initializes all global variables except those declared with the
keyword const.

custom

The generated main only initializes global variables that you specify. Click to
enter variable name.

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

Command-Line Information
Parameter: -main-generator-writes-variables

2 Option Descriptions specific to C++ Code

2-38

Value: none | public | all | custom=variable1[,variable2[,...]]
Default: uninit
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -main-generator-writes-variables all

See Also
“Verify module (C++)” on page 2-26 | “Initialization functions (C++)” on page 2-39 |
“Functions to call (C++)” on page 2-35 | “Class (C++)” on page 2-28 | “Functions to call
within the specified classes (C++)” on page 2-30 | “Analyze class contents only (C++)” on
page 2-32

Related Examples
• “Specify Analysis Options”

 Initialization functions (C++)

2-39

Initialization functions (C++)

Specify functions that you want the generated main to call ahead of other functions. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field.

If the function or method is not overloaded, specify the function name. Otherwise, specify
the function prototype with arguments. For instance, in the following code, you must
specify the prototypes func(int) and func(double).

int func(int x) {

 return(x * 2);

}

double func(double x) {

 return(x * 2);

}

If the function is:

• A class method: The generated main calls the class constructor before calling this
function.

• Not a class method: The generated main calls this function before calling class
methods.

Command-Line Information
Parameter: -functions-called-before-main
Value: function1[,function2[,...]]
No Default
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-main myClass::init

Dependencies

This option is enabled only if you select Verify module under Code Prover
Verification and your code does not contain a main function.

2 Option Descriptions specific to C++ Code

2-40

See Also
“Verify module (C++)” on page 2-26 | “Variables to initialize (C++)” on page 2-37 |
“Functions to call (C++)” on page 2-35 | “Class (C++)” on page 2-28 | “Functions to call
within the specified classes (C++)” on page 2-30 | “Analyze class contents only (C++)” on
page 2-32

Related Examples
• “Specify Analysis Options”

 Parameters (C++)

2-41

Parameters (C++)

This option is available only for model-generated code.

Specify variables that the generated main must initialize before the cyclic code loop
begins. Before the loop begins, Polyspace considers these variables to have any value
allowed by their type. This option is available on the Code Prover Verification node in
the Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click
to add a field. Enter variable name. For class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-before-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -variables-written-before-loop all

See Also
“Inputs (C++)” on page 2-43 | “Initialization functions (C++)” on page 2-45 |
“Step functions (C++)” on page 2-46 | “Termination functions (C++)” on page 2-48

Related Examples
• “Specify Analysis Options”

2 Option Descriptions specific to C++ Code

2-42

• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

 Inputs (C++)

2-43

Inputs (C++)

This option is available only for model-generated code.

Specify variables that the generated main must write to, at the beginning of every
iteration of the cyclic code loop. At the beginning of every loop iteration, Polyspace
considers these variables to have any value allowed by their type. This option is available
on the Code Prover Verification node in the Configuration pane.

Settings

Default: none

none

The generated main does not initialize variables.
all

The generated main initializes all variables except those declared with keyword
const.

custom

The generated main only initializes variables that you specify. Click
to add a field. Enter variable name. For class members, use the syntax
className::variableName.

Command-Line Information
Parameter: -variables-written-in-loop
Value: none | all | custom=variable1[,variable2[,...]]
Default: public
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -variables-written-in-loop all

See Also
“Parameters (C++)” on page 2-41 | “Initialization functions (C++)” on page 2-45 |
“Step functions (C++)” on page 2-46 | “Termination functions (C++)” on page 2-48

Related Examples
• “Specify Analysis Options”

2 Option Descriptions specific to C++ Code

2-44

• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

 Initialization functions (C++)

2-45

Initialization functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call before the cyclic code begins. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name. For class methods, use the syntax
className::functionName.

Command-Line Information
Parameter: -functions-called-before-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-before-loop myfunc

See Also
“Parameters (C++)” on page 2-41 | “Inputs (C++)” on page 2-43 | “Step functions (C++)”
on page 2-46 | “Termination functions (C++)” on page 2-48

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

2 Option Descriptions specific to C++ Code

2-46

Step functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call in each cycle of the cyclic code. This
option is available on the Code Prover Verification node in the Configuration pane.

Settings

Default: none

none

The generated main does not call functions in the cyclic code.
all

The generated main calls all functions except inlined ones.
custom

The generated main calls functions that you specify. Click to add a field. Enter
function name. For class methods, use the syntax className::functionName.

Tips

• If you specify a function for the option Initialization functions or Termination
functions, you cannot specify it for Step functions.

Command-Line Information
Parameter: -functions-called-in-loop
Value: none | all | custom=function1[,function2[,...]]
Default: none
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-in-loop all

See Also
“Parameters (C++)” on page 2-41 | “Inputs (C++)” on page 2-43 | “Initialization functions
(C++)” on page 2-45 | “Termination functions (C++)” on page 2-48

 Step functions (C++)

2-47

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”
• “Main Generation for Model Verification”

2 Option Descriptions specific to C++ Code

2-48

Termination functions (C++)

This option is available only for model-generated code.

Specify functions that the generated main must call after the cyclic code loop. This option
is available on the Code Prover Verification node in the Configuration pane.

Settings

No Default

Click to add a field. Enter function name. For class methods, use the syntax
className::functionName.

Tips

• If you specify a function for the option Initialization functions, you cannot specify it
for Termination functions.

Command-Line Information
Parameter: -functions-called-after-loop
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -main-
generator -functions-called-after-loop myfunc

See Also
“Parameters (C++)” on page 2-41 | “Inputs (C++)” on page 2-43 | “Initialization functions
(C++)” on page 2-45 | “Step functions (C++)” on page 2-46

Related Examples
• “Specify Analysis Options”
• “Configure Polyspace Analysis Options and Properties”

More About
• “Recommended Polyspace options for Verifying Generated Code”

 Termination functions (C++)

2-49

• “Main Generation for Model Verification”

2 Option Descriptions specific to C++ Code

2-50

No STL stubs (C++)

Specify that the verification must not use Polyspace implementations of the Standard
Template Library. This option is available on the Inputs & Stubbing node in the
Configuration pane.

Settings

Default: Off

 On
The verification does not use Polyspace implementations of the Standard Template
Library.

 Off
The verification uses efficient Polyspace implementations of the Standard Template
Library.

Tips

Use this option when Polyspace implementation of the Standard Template Library
causes linking errors.

Command-Line Information
Parameter: -no-stl-stubs
Default: Off

Related Examples
• “Specify Analysis Options”

 Functions to stub (C++)

2-51

Functions to stub (C++)
Specify functions to stub during verification. This option is available on the Inputs &
Stubbing node in the Configuration pane.

For these functions, Polyspace :

• Ignores the function definition even if it exists.
• Assumes that the function inputs and outputs have full range of values allowed by

their type.

Settings

No Default

Click to enter function name.

When entering function names, use one of the following syntaxes:

• Basic syntax, with extensions for classes and templates:

Function Type Syntax

Simple function test

Class method A::test

Template method A<T>::test

• Syntax with function arguments, to differentiate overloaded functions. Function
arguments are separated with semicolons:

Function Type Syntax

Simple function test()

Class method A::test(int;int)

Template method A<T>::test<T>::test(T;T)

Tips

If you do not want to review checks in a certain function, you can stub the function.
However, Polyspace makes certain assumptions about the arguments and return values

2 Option Descriptions specific to C++ Code

2-52

of stubbed functions. The assumptions can affect the number of checks in the rest of the
code. For example, the software considers that the return values assume the full range
allowed by the return type. For more information, see “Assumptions About Stubbed
Functions”.

You can specify external constraints on the arguments and return values of stubbed
functions. See “Constrain Function Stubbing”.

Command-Line Information
Parameter: -functions-to-stub
No Default
Value: function1[,function2[,...]]
Example: polyspace-code-prover-nodesktop -sources file_name -
functions-to-stub function_1,function_2

See Also
“No automatic stubbing (C/C++)” on page 1-37 | “Constraint setup (C/C++)” on page 1-33
| “Functions to stub (C)” on page 1-39

Related Examples
• “Specify Analysis Options”
• “Specify Functions to Stub Automatically”
• “Constrain Data with Stubbing”

More About
• “Stubbing Overview”
• “When to Provide Function Stubs”
• “Stubbing Examples”

 Tuning Precision and Scaling Parameters

2-53

Tuning Precision and Scaling Parameters

Precision versus Time of Verification

There is a compromise to be made to balance the time required to obtain results, and
the precision of those results. Consequently, launching Polyspace verification with
the following options will allow the time taken for verification to be reduced but will
compromise the precision of the results. It is suggested that the parameters should be
used in the sequence shown - that is, if the first suggestion does not increase the speed of
verification sufficiently then introduce the second, and so on.

• switch from -O2 to a lower precision;
• set the “Respect types in global variables (C/C++)” on page 1-90 and “Respect types in

fields (C/C++)” on page 1-88 options;
• set the option “Depth of verification inside structures (C/C++)” on page 1-129 to 2,

then 1, or 0;
• stub manually missing functions which write into their arguments.

Precision versus Code Size

Polyspace verification can make approximations when computing the possible values of
the variables, at any point in the program. Such an approximation will use a superset of
the actual possible values.

For instance, in a relatively small application, Polyspace verification might retain very
detailed information about the data at a particular point in the code, so that for example
the variable VAR can take the values { -2; 1; 2; 10; 15; 16; 17; 25 }. If VAR is used to
divide, the division is green (because 0 is not a possible value). If the program being
analyzed is large, Polyspace verification would simplify the internal data representation
by using a less precise approximation, such as [-2; 2] U {10} U [15 ; 17] U {25} . Here, the
same division appears as an orange check.

If the complexity of the internal data becomes even greater later in the verification,
Polyspace verification might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings when the size
of the program becomes large.

2 Option Descriptions specific to C++ Code

2-54

Note: The amount of simplification applied to the data representations also depends
on the required precision level (O0, O2), Polyspace verification will adjust the level of
simplification:

• -O0: shorter computation time. You only need to focus on red and gray checks.
• -O2: less orange warnings.
• -O3: less orange warnings and bigger computation time.

 Verification level (C++)

2-55

Verification level (C++)

Specify the number of times the Polyspace verification process runs on your source code.
Each run can lead to greater number of proven results but also requires more verification
time. This option is available on the Precision node in the Configuration pane.

Settings

Default: Software Safety Analysis level 2

C++ source compliance checking

Polyspace completes coding rules checking at the end of the compilation phase.
Software Safety Analysis level 0

The verification process runs once on your source code.
Software Safety Analysis level 1

The verification process runs twice on your source code.
Software Safety Analysis level 2

The verification process runs thrice on your source code. Use this option for most
accurate results in reasonable time.

Software Safety Analysis level 3

The verification process runs four times on your source code.
Software Safety Analysis level 4

The verification process runs five times on your source code.
other

If you use this option, Polyspace verification will make 20 passes unless you stop it
manually.

Tips

• Use the option Software Safety Analysis level 2. If the verification takes too
long, use a lower Verification level. Fix red errors and gray code before rerunning
the verification with higher verification levels.

• Use the option Other sparingly since it can increase verification time by an
unreasonable amount. Using Software Safety Analysis level 2 provides
optimal verification of your code in most cases.

2 Option Descriptions specific to C++ Code

2-56

Dependency

Do not specify the option Batch with the Verification Level option set to C++ source
compliance checking. The source compliance checking or compilation phase
takes place on your local computer even in batch mode. Therefore, if you are running
verification only up to this phase, run verification on your local computer.

Command-Line Information
Parameter: -to
Value: cpp-compliance | pass0 | pass1 | pass2 | pass3 | pass4 | other
Default: pass2
Example: polyspace-code-prover-nodesktop -sources file_name -to pass2

Related Examples
• “Specify Analysis Options”
• “Improve Verification Precision”

 Other (C++)

2-57

Other (C++)

In this section...

“-extra-flags” on page 2-57
“-cpp-extra-flags” on page 2-57
“-il-extra-flags” on page 2-57

Specify special options for C++ verification, which are provided by MathWorks
if required. This option is available on the Advanced Settings node in the
Configuration pane.

-extra-flags

No Default

Example Shell Script Entry:

polyspace-code-prover-nodesktop -extra-flags -param1 -extra-flags -

param2

-cpp-extra-flags

No Default

Example Shell Script Entry:

polyspace-code-prover-nodesktop -cpp-extra-flags -stubbed-new-may-

return-null

-il-extra-flags

No Default

Example Shell Script Entry:

polyspace-code-prover-nodesktop -il-extra-flags flag

3

Polyspace Analysis Options —
Command Line Only

3 Polyspace Analysis Options — Command Line Only

3-2

-asm-begin -asm-end
Exclude compiler-specific asm functions from analysis

Syntax

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]"

Description

-asm-begin "mark1[,mark2,...]" -asm-end "mark1[,mark2,...]" excludes
compiler-specific assembly language source code functions from the analysis. You must
use these two options together.

Mark the offending code block by two #pragma directives, one at the beginning of the
assembly code and one at the end. In the command usage, give these marks in the same
order for -asm-begin as they are for -asm-end.

Examples

A block of code is delimited by #pragma start1 and #pragma end1. These names must
be in the same order for their respective options. Either:

-asm-begin "start1" -asm-end "end1"

or

-asm-begin "mark1,...markN,start1" -asm-end "mark1,...markN,end1"

The following example marks two functions for exclusion, foo_1 and foo_2.

Code:

#pragma asm_begin_foo

int foo(void) { /* asm code to be ignored by Polyspace */ }

#pragma asm_end_foo

#pragma asm_begin_bar

void bar(void) { /* asm code to be ignored by Polyspace */ }

 -asm-begin -asm-end

3-3

#pragma asm_end_bar

Polyspace Command:

polyspace-code-prover-nodesktop -lang c -asm-begin "asm_begin_foo,asm_begin_bar"

 -asm-end "asm_end_foo,asm_end_bar"

asm_begin_foo and asm_begin_bar mark the beginning of the assembly source code
sections to be ignored. asm_end_foo and asm_end_bar mark the end of those respective
sections.

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-4

-author
Specify project author

Syntax

-author "value"

Description

-author "value" assigns an author to the Polyspace project. The name appears as the
project owner in Polyspace Metrics and on generated reports.

The default value is the user name of the current user, given by the DOS or UNIX
command whoami.

Note: In the Polyspace environment, select to specify the Project name, Version, and
Author parameters in the Polyspace Project – Properties dialog box.

Examples

Assign a project author to your Polyspace Project.

polyspace-code-prover-nodesktop -author "John Smith"

See Also
-date | -prog | polyspaceCodeProver

 -date

3-5

-date
Specify date of analysis

Syntax

-date "date"

Description

-date "date" specifies the date stamp for the analysis in the format dd/mm/yyyy. By
default the value is the date the analysis starts.

Examples

Assign a date to your Polyspace Project.

polyspace-code-prover-nodesktop -date "15/03/2012"

See Also
-author | -prog

3 Polyspace Analysis Options — Command Line Only

3-6

-detect-pointer-escape

Detect stack pointer dereference outside scope

Syntax

-detect-pointer-escape

Description

-detect-pointer-escape detects stack pointer dereferences outside scope. Such
dereference can happen, for example, when a pointer to a variable that is local to a
function is returned from the function. Because the scope of the variable is limited to the
function, dereferencing the pointer outside the function can cause undefined behavior.

Examples

In the following code, if you use this option, Polyspace Code Prover produces a red
Illegally dereferenced pointer check on *ptr. Otherwise the Illegally dereferenced
pointer check on *ptr is green.

void func2(int *ptr) {

 *ptr = 0;

}

int* func1(void) {

 int ret = 0;

 return &ret ;

}

void main(void) {

 int* ptr = func1() ;

 func2(ptr) ;

}

The Result Details pane displays a message indicating that ret is accessed outside its
scope.

 -detect-pointer-escape

3-7

See Also
polyspaceCodeProver

Related Examples
• “Run Local Verification at Command Line”

Introduced in R2015a

3 Polyspace Analysis Options — Command Line Only

3-8

-h[elp]
Display list of possible options

Syntax

-h

-help

Description

-h and -help display the list of possible options in the shell window and the argument
syntax.

Examples

Display the command-line help.

polyspace-code-prover-nodesktop -h

polyspace-code-prover-nodesktop -help

See Also
polyspaceCodeProver

 -I

3-9

-I
Specify include folder for compilation

Syntax

-I folder

Description

-I folder specifies the name of a folder that you must include when compiling C
sources. You can specify only one folder for each instance of -I. However, you can specify
this option multiple times.

Polyspace software automatically includes the ./sources folder (if it exists) after the
include folders that you specify.

Examples

Include two folders with the analysis.

polyspace-code-prover-nodesktop -I /com1/inc -I /com1/sys/inc

Because ./sources is included automatically, this Polyspace command is equivalent to:

polyspace-code-prover-nodesktop -I /com1/inc -I /com1/sys/inc

 -I ./sources

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-10

-import-comments
Import comments and justifications from previous analysis

Syntax

-import-comments resultsFolder

Description

-import-comments resultsFolder imports the comments and justifications from a
previous analysis, as specified by the results folder.

Examples

Increment your project’s version number (-version) and import comments from the
previous results.

polyspace-code-prover-nodesktop -version 1.3

 -import-comments C:\Results\myProj\1.2

See Also
-version | polyspaceCodeProver

 -lang

3-11

-lang
Specify code language for the project

Syntax

-lang [c|cpp]

Description

-lang [c|cpp] specifies the code language for the project, either c for C code or cpp for
C++ code.

If you do not specify a language, Polyspace tries to detect the language from the source
files.

Note: In the Polyspace user interface, specify the project language when you create a new
project. For more information, see “Create Project”.

Examples

Define the language of your Polyspace project as C++.

polyspace-code-prover-nodesktop -lang cpp -sources...

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-12

-lightweight-thread-model
Reduce task complexity

Syntax

-lightweight-thread-model

Description

-lightweight-thread-model specifies that the verification must use a slightly less
precise model than default for interaction between tasks. Using this option can speed up
verification, but you see a greater number of unproven results.

There is a loss of precision when variables shared between tasks are read through
pointers.

Examples

Define the language of your Polyspace project as C++.

polyspace-code-prover-nodesktop -lightweight-thread-model

See Also
“Entry points (C/C++)” on page 1-46 | polyspaceCodeProver

Related Examples
• “Run Local Verification at Command Line”
• “Specify Analysis Options”
• “Reduce Verification Time”

 -max-processes

3-13

-max-processes
Specify the maximum number of processes that can run simultaneously on a multicore
system.

Syntax

-max-processes num

Description

-max-processes num specifies the maximum number of processes that can run
simultaneously on a multicore system. The valid range of num is 1 to 128. The default is
4.

Examples

Disable parallel processing during the analysis.

polyspace-code-prover-nodesktop -max-processes 1

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-14

-options-file
Run Polyspace using list of options

Syntax

-options-file file

Description

-options-file file specifies a file which lists your analysis options. The file must be
a text file with each option on a separate line. Use # to add comments to this file.

Examples

1 Create an options file called listofoptions.txt with your options. For example:

#These are the options for MyCodeProverProject

-lang c

-prog MyCodeProverProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-dialect none

-dos

-misra2 required-rules

-includes-to-ignore all-headers

-main-generator

-results-dir C:\Polyspace\MyCodeProverProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-code-prover-nodesktop -options-file listofoptions.txt

See Also
polyspaceCodeProver | polyspaceConfigure

 -prog

3-15

-prog
Specify name of project

Syntax

-prog projectName

Description

-prog projectName specifies the name of your Polyspace project. This name must use
only letters, numbers, underscores (_), dashes (-), or periods (.).

Examples

Assign a session name to your Polyspace Project.

polyspace-code-prover-nodesktop -prog MyApp

See Also
-author | -date | polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-16

-report-output-name
Specify name of report

Syntax

-report-output-name reportName

Description

-report-output-name reportName specifies the name of an analysis report.

The default name for a report is Prog_Template.Format:

• Prog is the name of the project specified by -prog.
• TemplateName is the type of report template specified by -report-template.
• Format is the file extension for the report specified by -report-output-format.

Examples

Specify the name of the analysis report.

polyspace-code-prover-nodesktop -report-template Developer

 -report-output-name Airbag_v3.doc

See Also
“Output format (C/C++)” on page 1-136 | “Report template (C/C++)” on page 1-132 |
polyspaceCodeProver

 -results-dir

3-17

-results-dir
Specify the results folder

Syntax

-results-dir

Description

-results-dir specifies where to save the analysis results. The default location at
the command line is the current folder. In the user interface, the default location is
C:Polyspace_Results.

Examples

Specify to store your results in the RESULTS folder.

polyspace-code-prover-nodesktop -results-dir RESULTS ...

 export RESULTS=results_'date + %d%B_%HH%M_%A'

polyspace-code-prover-nodesktop -results-dir 'pwd'/$RESULTS

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-18

-scheduler
Specify cluster or job scheduler

Syntax

-scheduler schedulingOption

Description

-scheduler schedulingOption specifies the head node of the cluster or MATLAB job
scheduler on the node host. Use this command to manage the cluster, or to specify where
to run batch analyses.

Examples

Run a batch analysis on a remote server.

polyspace-code-prover-nodesktop -batch -scheduler NodeHost

polyspace-code-prover-nodesktop -batch -scheduler 192.168.1.124:12400

polyspace-code-prover-nodesktop -batch -scheduler MJSName@NodeHost

polyspace-job-manager listjobs -scheduler NodeHost

See Also
polyspaceCodeProver | polyspaceJobsManager | polyspaceJobsManager

 -sources

3-19

-sources
Specify source files

Syntax

-sources file1[,file2,...]

-sources file1 -sources file2

Description

-sources file1[,file2,...] or -sources file1 -sources file2 specifies the
list of source files that you want to analyze. The list must be in quotations and separated
by commas. You can use standard UNIX wildcards with this option to specify your
sources.

The source files are compiled in the order in which they are specified.

Examples

Analyze the files mymain.c, funAlgebra.c, and funGeometry.c.

polyspace-code-prover-nodesktop -sources mymain.c

 -sources funAlgebra.c -sources funGeometry.c

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-20

-sources-list-file
Specify file containing list of sources

Syntax

-sources-list-file "filename"

Description

-sources-list-file "filename" specifies a text file that lists each file name that
you want to analyze.

To specify your sources in the text file, on each line, specify the absolute path to a source
file. For example:

C:\Sources\myfile.c

C:\Sources2\myfile2.c

This option is available only in batch analysis mode.

Examples

Run analysis on files listed in files.txt.

polyspace-code-prover-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "C:\Analysis\files.txt

polyspace-code-prover-nodesktop -batch -scheduler NODEHOST

 -sources-list-file "/home/polyspace/files.txt"

See Also
polyspaceCodeProver

 -static-headers-object

3-21

-static-headers-object
Treat variables or functions defined in header file as static during verification

Syntax

-static-headers-object

Description

-static-headers-object allows you to avoid linking errors when a header file
containing a variable or function definition is included in multiple source files.

Examples

For instance, if you run verification on the following source code, you see an error
because of the multiple inclusion of header.h.

header.h file1.c file2.c

void func() {

 }

#include "header.h" #include "header.h"

To avoid the error, add the keyword static or inline before the function definition.
Otherwise, if your compiler allows multiple inclusions of the header with the function
definition and you do not want to change your code, use the option -static-headers-
object:

polyspace-code-prover-nodesktop -sources file1.c,file2.c

 -I C:\Includes -static-headers-object

Tips

The option does not prevent linking errors if the variable defined in the header file is not
const-qualified.

3 Polyspace Analysis Options — Command Line Only

3-22

Related Examples
• “Run Local Verification at Command Line”

 -support-FX-option-results

3-23

-support-FX-option-results
Allow partial translation of sources with managed extensions

Syntax

-support-FX-option-results

Description

-support-FX-option-results allows the analysis of a project containing translated
sources obtained by compilation of a Visual project using the /FX Visual option.

Visual C++ /FX option allows the partial translation of sources making use of managed
extensions to Visual C++ sources without managed extensions.

Using /FX, the translated files are generated in place of the original ones in the project,
but the names are changed from foo.ext to foo.mrg.ext.

These extensions are currently not taken into account by Polyspace analysis and can be
considered as a limitation to analyze this kind of code. Managed files need to be located
in the same folder as the original ones and Polyspace software will analyze managed files
instead of the original ones without intrusion, and will permit you to remove part of the
limitations due to specific extensions.

Dependencies

This analysis option is available only when your configuration includes both,

• -OS-target set to no-predefined-OS or Visual.
• -dialect set to visual*, where visual* is one of the Visual C++ dialect options.

Examples

Assign a project author to your Polyspace Project.

3 Polyspace Analysis Options — Command Line Only

3-24

polyspace-code-prover-nodesktop -lang cpp

 -OS-target Visual

 -dialect visual10

 -support-FX-option-results

See Also
-date | -prog | “Target operating system (C/C++)” on page 1-4 | “Dialect (C++)” on
page 2-3 | polyspaceCodeProver

 -tmp-dir-in-results-dir

3-25

-tmp-dir-in-results-dir
Keep temporary files in results folder

Syntax

-tmp-dir-in-results-dir

Description

-tmp-dir-in-results-dir keeps temporary files in the results folder. By default,
temporary files are stored in the standard /temp or C:\Temp folder. This option stores
the temporary files in a subfolder of the results folder. Use this option only when the
temporary folder partition does not have enough disk space. If the results folder is
mounted on a network drive, this option can slow down your processor.

Examples

Store temporary files in the results folder.

polyspace-code-prover-nodesktop -tmp-dir-in-results-dir

See Also
polyspaceCodeProver

3 Polyspace Analysis Options — Command Line Only

3-26

-v[ersion]
Display Polyspace version number

Syntax

-v

-version

Description

-v or -version displays the version number of your Polyspace product.

Examples

Display the version number and release of your Polyspace product.

polyspace-code-prover-nodesktop -v

See Also
polyspaceCodeProver

 -verif-version

3-27

-verif-version
Assign a version identifier

Syntax

-verif-version id

Description

-verif-version id assigns a verification identifier, id, to identify the verification.
You can use this identifier to refer to different verifications at the command line. For
example, you can import comments from a previous verification using the verification
identifier.

Examples

Assign a verification identifier.

polyspace-code-prover-nodesktop -verif-version 1.3

See Also
polyspaceCodeProver

4

Check Reference

4 Check Reference

4-2

Absolute address
Absolute address is assigned to pointer

Description

This check appears when an absolute address is assigned to a pointer.

This check is always orange because the software does not have information about the
absolute address and cannot verify, for example, the validity of the address and the
availability of memory.

To disable this check, specify the appropriate option. See “Green absolute address checks
(C/C++)” on page 1-94.

Diagnosing This Check

“Review and Fix Absolute Address Checks”

Examples

Absolute address assigned to pointer

void main() {

 int *p = (int *)0x32;

 int x = *p;

 p++;

 x = *p;

}

In this example, p is assigned an absolute address.

Following this check:

• Polyspace considers that p points to a valid memory location. Therefore the Illegally
dereferenced pointer check on the following line is green.

 Absolute address

4-3

• In the next two lines, the pointer p is incremented and then dereferenced. In this
case, an Illegally dereferenced pointer check appears on the dereference and not
an Absolute address check even though p still points to an absolute address.

Correction — Use Polyspace analysis option

You can use absolute addresses in your code and not produce an orange Absolute
address error. To allow absolute addresses, on the Configuration pane, under
Verification Assumptions, select Green absolute address checks.

void main() {

 int *p = (int *)0x32;

 int x = *p;

 p++;

 x = *p;

}

Check Information
Group: Static memory
Language: C | C++
Acronym: ABS_ADDR

4 Check Reference

4-4

Correctness condition

Mismatch occurs during pointer cast or function pointer use

Description

This check determines whether:

• An array is mapped to a larger array through a pointer cast
• A function pointer points to a function with a valid prototype
• A global variable falls outside the range specified through the Global Assert mode.

Diagnosing This Check

“Review and Fix Correctness Condition Checks”

Examples

Array is mapped to larger array

typedef int smallArray[10];

typedef int largeArray[100];

void main() {

 largeArray myLargeArray;

 smallArray *smallArrayPtr = (smallArray*) &myLargeArray;

 largeArray *largeArrayPtr = (largeArray*) smallArrayPtr;

}

In this example:

• In the first pointer cast, a pointer of type largeArray is cast to a pointer of type
smallArray. Because the data type smallArray represents a smaller array, the
Correctness condition check is green.

 Correctness condition

4-5

• In the second pointer cast, a pointer of type smallArray is cast to a pointer of type
largeArray. Because the data type largeArray represents a larger array, the
Correctness condition check is red.

Function pointer does not point to function

typedef void (*callBack) (float data);

typedef struct {

 char funcName[20];

 callBack func;

} funcStruct;

funcStruct myFuncStruct;

void main() {

 float val = 0.0;

 myFuncStruct.func(val);

}

In this example, the global variable myFuncStruct is not initialized, so the function
pointer myFuncStruct.func contains NULL. When the pointer myFuncStruct.func is
dereferenced, the Correctness condition check produces a red error.

Function pointer points to function through absolute address usage

#define MAX_MEMSEG 32764

typedef void (*ptrFunc)(int memseg);

ptrFunc operation = (ptrFunc)(0x003c);

void main() {

 for (int i=1; i<=MAX_MEMSEG; i++)

 operation(i);

}

In this example, the function pointer operation is cast to the contents of a memory
location. Polyspace cannot determine whether the location contains a variable or a
function code and whether the function is well-typed. Therefore, when the pointer
operation is dereferenced and used in a function call, the Correctness condition
check is orange.

After an orange Correctness condition check due to absolute address usage, the
software assumes that the following variables have the full range of values allowed by
their type:

4 Check Reference

4-6

• Variable storing the return value from the function call.

In the following example, the software assumes that ret has full-range value.

typedef int (*ptrFunc)(int);

ptrFunc operation = (ptrFunc)(0x003c);

.

.

ret=operation(0);

• Variables that can be modified through the function arguments.

In the following example, the function pointer operation takes a pointer argument
ptr that points to a variable var. After the call to operation, the software assumes
that var has full-range value.

typedef void (*ptrFunc)(int*);

ptrFunc operation = (ptrFunc)(0x003c);

.

.

int var;

int *ptr=&var;

operation(ptr);

Function pointer points to function with wrong argument type

typedef struct {

 double real;

 double imag;

} complex;

typedef int (*typeFuncPtr) (complex*);

int func(int* x);

void main() {

 typeFuncPtr funcPtr = &func;

 int arg = 0, result = funcPtr(&arg);

}

In this example, the function pointer funcPtr points to a function with argument
type complex*. However, the pointer is assigned the address of function func whose
argument type is int*. Because of this type mismatch, the Correctness condition
check produces a red error.

 Correctness condition

4-7

Function pointer points to function with wrong number of arguments

typedef int (*typeFuncPtr) (int, int);

int func(int);

void main() {

 typeFuncPtr funcPtr = &func;

 int arg1 = 0, arg2 = 0, result = funcPtr(arg1,arg2);

}

In this example, the function pointer funcPtr points to a function with two int
arguments. However, it is assigned the function func which has one int argument only.
Because of this mismatch in number of arguments, the Correctness condition check
produces a red error.

Function pointer points to function with wrong return type

typedef double (*typeFuncPtr) (int);

int func(int);

void main() {

 typeFuncPtr funcPtr = &func;

 int arg = 0;

 double result = funcPtr(arg);

}

In this example, the function pointer funcPtr points to a function with return type
double. However, it is assigned the function func whose return type is int. Because of
this mismatch in return types, the Correctness condition check produces a red error.

Variable falls outside Global Assert range

int glob = 0;

int func();

void main() {

 glob = 5;

 glob = func();

 glob+= 20;

}

4 Check Reference

4-8

In this example, a range of 0..10 was specified for the global variable glob.

• In the statement glob=5;, a green Correctness condition check appears on glob.
• In the statement glob=func();, an orange Correctness condition check appears

on glob because the return value of stubbed function func can be outside 0..10.

After this statement, Polyspace considers that glob has values in 0..10.
• In the statement glob+=20;, a red Correctness condition check appears on glob

because after the addition, glob has values in 20..30.

Check Information
Group: Other
Language: C | C++
Acronym: COR

See Also
“Constraint setup (C/C++)” on page 1-33 | “Permissive function pointer calls (C)” on page
1-110

More About
• “Constrain Global Variable Range”

 C++ specific checks

4-9

C++ specific checks
C++ specific invalid operations occur

Description

This check on C++ code operations determine whether the operations are valid. The
checks look for a range of invalid behaviors:

• Array size is not strictly positive.
• typeid operator dereferences a NULL pointer.
• dynamic_cast operator performs an invalid cast.

Examples

Array size is not strictly positive

class License {

protected:

 int numberOfUsers;

 char (*userList)[20];

 int *licenseList;

public:

 License(int numberOfLicenses);

 void initializeList();

 char* getUser(int);

 int getLicense(int);

};

License::License(int numberOfLicenses) : numberOfUsers(numberOfLicenses) {

 userList = new char [numberOfUsers][20];

 licenseList = new int [numberOfUsers];

 initializeList();

}

int getNumberOfLicenses();

int getIndexForSearch();

void main() {

4 Check Reference

4-10

 int n = getNumberOfLicenses();

 if(n >= 0 && n <= 100) {

 License myFirm(n);

 int index = getIndexForSearch();

 myFirm.getUser(index);

 myFirm.getLicense(index);

 }

}

In this example, the argument n to the constructor License::License falls in two
categories:

• n = 0: When the new operator uses this argument, the C++ specific checks produce
an error.

• n > 0: When the new operator uses this argument, the C++ specific checks is
green.

Combining the two categories of arguments, the C++ specific checks produce an orange
error on the new operator.

typeid operator dereferences a NULL pointer

#include <iostream>

#include <typeinfo>

#define PI 3.142

class Shape {

public:

 Shape();

 virtual void setVal(double) = 0;

 virtual double area() = 0;

};

class Circle: public Shape {

 double radius;

public:

 Circle(double radiusVal):Shape() {

 setVal(radiusVal);

 }

 void setVal(double radiusVal) {

 if(radiusVal > 0)

 radius = radiusVal;

 C++ specific checks

4-11

 else

 radius = 0;

 }

 double area() {

 return (PI * radius * radius);

 }

};

class Square: public Shape {

 double side;

public:

 Square(double sideVal):Shape() {

 setVal(sideVal);

 }

 void setVal(double sideVal) {

 if(sideVal > 0)

 side = sideVal;

 else

 side = 0;

 }

 double area() {

 return (side * side);

 }

};

Shape* getShapePtr();

void main() {

 Shape* shapePtr = getShapePtr();

 double val;

 if(typeid(*shapePtr)==typeid(Circle)) {

 std::cout<<"Enter radius:";

 std::cin>>val;

 shapePtr -> setVal(val);

 std::cout<<"Area of circle = "<<shapePtr -> area();

 }

 else if(typeid(*shapePtr) == typeid(Square)) {

 std::cout<<"Enter side:";

 std::cin>>val;

 shapePtr -> setVal(val);

4 Check Reference

4-12

 std::cout<<"Area of square = "<<shapePtr -> area();

 }

 else {

 std::cout<<"No valid shape.";

 }

}

In this example, the Shape* pointer shapePtr returned by getShapePtr() function
can be:

• NULL: When shapePtr is used with the typeid operator, the C++ specific checks
produce an error.

• Not NULL: When shapePtr is used with the typeid operator, the C++ specific
checks is green.

Combining these two cases, the C++ specific checks produce an orange error on the
typeid operator in the first if statement branch in main.

Following this orange error, Polyspace considers that shapePtr is not NULL. Therefore,
the C++ specific checks on the typeid operator in the second if statement branch is
green.

Check Information
Group: C++
Language: C++
Acronym: CPP

 Division by zero

4-13

Division by zero
Division by zero occurs

Description

This check determines whether the right operand of a division or modulus operation is
zero.

Diagnosing This Check

“Review and Fix Division by Zero Checks”

Examples

Red integer division by zero

#include <stdio.h>

void main() {

 int x=2;

 printf("Quotient=%d",100/(x-2));

}

In this example, the denominator x-2 is zero.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

In a complex code, it is difficult to keep track of values and avoid zero denominators.
Therefore, it is good practice to check for zero denominator before every division.

#include <stdio.h>

int input();

void main() {

 int x=input();

4 Check Reference

4-14

 if(x>0) { //Avoid overflow

 if(x!=2 && x>0)

 printf("Quotient=%d",100/(x-2));

 else

 printf("Zero denominator.");

 }

}

Red integer division by zero after for loop

#include <stdio.h>

void main() {

 int x=-10;

 for (int i=0; i<10; i++)

 x+=3;

 printf("Quotient=%d",100/(x-20));

}

In this example, the denominator x-20 is zero.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

After several iterations of a for loop, it is difficult to keep track of values and avoid zero
denominators. Therefore, it is good practice to check for zero denominator before every
division.

#include <stdio.h>

#define MAX 10000

int input();

void main() {

 int x=input();

 for (int i=0; i<10; i++) {

 if(x < MAX) //Avoid overflow

 x+=3;

 }

 if(x>0) { //Avoid overflow

 if(x!=20)

 printf("Quotient=%d",100/(x-20));

 else

 printf("Zero denominator.");

 Division by zero

4-15

 }

}

Orange integer division by zero inside for loop

#include<stdio.h>

void main() {

 printf("Sequence of ratios: \n");

 for(int count=-100; count<=100; count++)

 printf(" .2f ", 1/count);

}

In this example, count runs from -100 to 100 through zero. When count is zero, the
Division by zero check returns a red error. Because the check returns green in the
other for loop runs, the / symbol is orange.

There is also a red Non-terminating loop error on the for loop. This red error
indicates a definite error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division.

#include<stdio.h>

void main() {

 printf("Sequence of ratios: \n");

 for(int count=-100; count<=100; count++) {

 if(count != 0)

 printf(" .2f ", 1/count);

 else

 printf(" Infinite ");

 }

}

Orange float division by zero inside for loop

#include <stdio.h>

#define stepSize 0.1

void main() {

 float divisor = -1.0;

4 Check Reference

4-16

 int numberOfSteps = (int)((2*1.0)/stepSize);

 printf("Divisor running from -1.0 to 1.0\n");

 for(int count = 1; count <= numberOfSteps; count++) {

 divisor += stepSize;

 printf(" .2f ", 1.0/divisor);

 }

}

In this example, divisor runs from –1.0 to 1.0 through 0.0. When divisor is 0.0, the
Division by zero check returns a red error. Because the check returns green in the
other for loop runs, the / symbol is orange.

There is no red Non-terminating loop error on the for loop. The red error does not
appear because Polyspace approximates the values of divisor by a broader range.
Therefore, Polyspace cannot determine if there is a definite error in one of the loop runs.

Correction — Check for zero denominator

One possible correction is to check for a zero denominator before division. For float
variables, do not check if the denominator is exactly zero. Instead, check whether the
denominator is in a narrow range around zero.

#include <stdio.h>

#define stepSize 0.1

void main() {

 float divisor = -1.0;

 int numberOfSteps = (int)((2*1.0)/stepSize);

 printf("Divisor running from -1.0 to 1.0\n");;

 for(int count = 1; count <= numberOfSteps; count++) {

 divisor += stepSize;

 if(divisor < -0.00001 || divisor > 0.00001)

 printf(" .2f ", 1.0/divisor);

 else

 printf(" Infinite ");

 }

}

Check Information
Group: Numerical

 Division by zero

4-17

Language: C | C++
Acronym: ZDV

4 Check Reference

4-18

Exception handling
Exception handling

Description

This check determines whether:

• A function call throws an exception.
• The exception is caught.

This check appears on both a function call as well as the function body. Use this check to
follow the propagation of error from an entry-point function down the branches of the call
tree.

Examples

Exception in calls to function

#include <vector>

class error {};

class initialVector {

private:

 int sizeVector;

 vector<int> table;

public:

 initialVector(int size) {

 sizeVector = size;

 table.resize(sizeVector);

 Initialize();

 }

 void Initialize();

 int getValue(int number) throw(error);

};

void initialVector::Initialize() {

 Exception handling

4-19

 for(int i=0; i<table.size(); i++)

 table[i]=0;

}

int initialVector::getValue(int index) throw(error) {

 if(index >=0 && index < sizeVector)

 return table[index];

 else throw error();

}

void main() {

 initialVector *vectorPtr = new initialVector(5);

 vectorPtr -> getValue(5);

}

In this example, the call to method initialVector::getValue throws an exception.
This exception appears as a red Exception handling error on both the function call and
function body. A red Exception handling error also appears on main because a function
call inside main throws an exception.

Exception handled through try/catch construct

class error {

 error() { }

 error(const error&) { }

} ;

void funcNegative() {

 try {

 throw error() ;

 }

 catch (error NegativeError) {

 }

}

void funcPositive() {

 try {

 }

 catch (error PositiveError) {

 }

}

4 Check Reference

4-20

int input();

void main()

{

 int val=input();

 if(val < 0)

 funcNegative();

 else

 funcPositive();

}

In this example:

• The call to funcNegative throws an exception. However, the exception is placed
inside a try block. Therefore, the exception propagates to the corresponding catch
block and does not continue further. The Exception handling check on the function
body, function call, and the main function appears green.

• The call to funcPositive does not throw an exception in the try block. Therefore,
the catch block following the try block appears gray.

Exception in calls to constructor

class error {

};

class X

{

public:

 X() {

 throw error();

 }

 ~X() {

 ;

 }

};

int main() {

 try {

 X * px = new X ;

 delete X;

 } catch (error) {

 assert(1) ;

 }

}

 Exception handling

4-21

In this example, the new operator calls the constructor X::X(). The constructor
throws an exception. The exception appears as a red Exception handling error on the
constructor body and the new operator. The exception then propagates to the catch block
and does not continue farther. Therefore the Exception handling check on the main
function appears green.

The green assert statement shows that the exception has propagated to the catch
block.

Exception in calls to destructor

class error {

};

class X

{

public:

 X() {

 ;

 }

 ~X() {

 throw error();

 }

};

int main() {

 try {

 X * px = new X ;

 delete px;

 } catch (error) {

 assert(1) ;

 }

}

In this example, the delete operator calls the destructor X::~X(). The destructor
throws an exception that appears as a red error on the destructor body and dashed red
on the delete operator. The exception does not propagate to the catch block. The code
following the exception is not verified. This behavior enforces the requirement that a
destructor must not throw an exception.

The black assert statement suggests that the exception has not propagated to the
catch block.

4 Check Reference

4-22

Exception in infinite loop

#include<stdio.h>

#define SIZE 100

int arr[SIZE];

int getIndex();

int runningSum() {

 int index, sum=0;

 while(1) {

 index=getIndex();

 if(index < 0 || index >= SIZE)

 throw int(1);

 sum+=arr[index];

 }

}

void main() {

 printf("The sum of elements is: %d",runningSum());

}

In this example, the runningSum function throws an exception only if index is outside
the range [0,SIZE]. Typically, an error that occurs due to instructions in an if
statement is orange, not red. The error is orange because an alternate execution path
that does not involve the if statement does not produce an error. Here, because the
loop is infinite, there is no alternate execution path that goes outside the loop. The only
way to go outside the loop is through the exception in the if statement. Therefore, the
Exception handling error is red.

Type mismatch between throw declaration and usage

#include <string>

class negativeBalance {

public:

 negativeBalance(const string & s): errorMessage(s) {}

 ~negativeBalance() {}

private:

 string errorMessage;

};

class Account {

 Exception handling

4-23

public:

 Account(long initVal):balance(initVal) {}

 ~Account() {}

 void debitAccount(long debitAmount) throw (int, char);

private:

 long balance;

};

void Account::debitAccount(long debitAmount) throw (int, char) {

 if((balance - debitAmount) < 0)

 throw negativeBalance("Negative balance");

 else

 balance -= debitAmount;

}

void main() {

 Account *myAccount = new Account(1000);

 try {

 myAccount -> debitAccount(2000);

 }

 catch(negativeBalance &) {

 }

 delete myAccount;

}

In this example, the arguments to throw in the Account::debitAccount method are
declared to be either int or char. However, the method throws an exception with type
negativeBalance. Therefore, the Exception handling check produces a red error on
throw.

Check Information
Group: C++
Language: C++
Acronym: EXC

4 Check Reference

4-24

Function not reachable
Function is called from unreachable part of code

Description

This check appears on a function definition. The check appears gray if the function is
called only from an unreachable part of the code. The unreachable code can occur in one
of the following ways:

• The code is reached through a condition that is always false.
• The code follows a break or return statement.
• The code follows a red check.

If your code does not contain a main function, this check is disabled

Note: This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see “Detect uncalled functions (C/C+
+)” on page 1-111.

Diagnosing This Check

“Review and Fix Function Not Reachable Checks”

Examples

Function Call from Unreachable Branch of Condition

#include<stdio.h>

#define SIZE 100

void increase(int* arr, int index);

void printError() {

 printf("Array index exceeds array size.");

}

 Function not reachable

4-25

void main() {

 int arr[SIZE],i;

 for(i=0; i<SIZE; i++)

 arr[i]=0;

 for(i=0; i<SIZE; i++) {

 if(i<SIZE)

 increase(arr,i);

 else

 printError();

 }

}

In this example, in the second for loop in main, i is always less than SIZE. Therefore,
the else branch of the condition if(i<SIZE) is never reached. Because the function
printError is called from the else branch alone, there is a gray Function not
reachable check on the definition of printError.

Function Call Following Red Error

#include<stdio.h>

int getNum(void);

void printSuccess() {

 printf("The operation is complete.");

}

void main() {

 int num=getNum(), den=0;

 printf("The ratio is %.2f", num/den);

 printSuccess();

}

In this example, the function printSucess is called following a red Division by Zero
error. Therefore, there is a gray Function not reachable check on the definition of
printSuccess.

Function Call from Another Unreachable Function

#include<stdio.h>

4 Check Reference

4-26

#define MAX 1000

#define MIN 0

int getNum(void);

void checkRatio(double ratio) {

 checkUpperBound(ratio);

 checkLowerBound(ratio);

}

void checkUpperBound(double ratio) {

 if(ratio < MAX)

 printf("The ratio is within bounds.");

}

void checkLowerBound(double ratio) {

 if(ratio > MIN)

 printf("The ratio is within bounds.");

}

void main() {

 int num=getNum(), den=0;

 double ratio;

 ratio=num/den;

 checkRatio(ratio);

}

In this example, the function checkRatio follows a red Division by Zero error.
Therefore, there is a gray Function not reachable error on the definition of
checkRatio. Because checkUpperBound and checkLowerBound are called only from
checkRatio, there is also a gray Function not reachable check on their definitions.

Function Call from Unreachable Code Using Function Pointer

#include<stdio.h>

int getNum(void);

int getChoice(void);

int num, den, choice;

double ratio;

void display(void) {

 printf("Numerator = %d, Denominator = %d", num, den);

 Function not reachable

4-27

}

void display2(void) {

 printf("Ratio = %.2f",ratio);

}

void main() {

 void (*fptr)(void);

 choice = getChoice();

 if(choice == 0)

 fptr = &display;

 else

 fptr = &display2;

 num = getNum();

 den = 0;

 ratio = num/den;

 (*fptr)();

}

In this example, depending on the value of choice, the function pointer fptr can point
to either display or to display2. The call through fptr follows a red Division by
Zero error. Because display and display2 are called only through fptr, a gray
Function not reachable check appears on their definitions.

Check Information
Group: Data flow
Language: C | C++
Acronym: FNR

See Also

Polyspace Analysis Options
“Detect uncalled functions (C/C++)” on page 1-111

Polyspace Results
Function not called | Unreachable code

4 Check Reference

4-28

Function returns a value
C++ function does not return value when expected

Description

This check determines whether a function with a return type other than void returns a
value. This check appears on the function definition.

Examples

Function does not return value for any input

#include <stdio.h>

int input();

int inputRep();

int reply(int msg) {

 int rep = inputRep();

 if (msg > 0) return rep;

}

void main(void) {

 int ch = input(), ans;

 if (ch<=0)

 ans = reply(ch);

 printf("The answer is %d.",ans);

}

In this example, for all values of ch, reply(ch) has no return value. Therefore the
Function returns a value check returns a red error on the definition of reply().

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>

int input();

 Function returns a value

4-29

int inputRep();

int reply(int msg) {

 int rep = inputRep();

 if (msg > 0) return rep;

 return 0;

}

void main(void) {

 int ch = input(), ans;

 if (ch<=0)

 ans = reply(ch);

 printf("The answer is %d.",ans);

}

Function does not return value for some inputs

#include <stdio.h>

int input();

int inputRep(int);

int reply(int msg) {

 int rep = inputRep(msg);

 if (msg > 0) return rep;

}

void main(void) {

 int ch = input(), ans;

 if (ch<10)

 ans = reply(ch);

 else

 ans = reply(10);

 printf("The answer is %d.",ans);

}

In this example, in the first branch of the if statement, the value of ch can be divided
into two ranges:

• ch < = 0: For the function call reply(ch), there is no return value.
• ch > 0 and ch < 10: For the function call reply(ch), there is a return value.

Therefore the Function returns a value check returns an orange error on the
definition of reply().

4 Check Reference

4-30

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>

int input();

int inputRep(int);

int reply(int msg) {

 int rep = inputRep(msg);

 if (msg > 0) return rep;

 return 0;

}

void main(void) {

 int ch = input(), ans;

 if (ch<10)

 ans = reply(ch);

 else

 ans = reply(10);

 printf("The answer is %d.",ans);

}

Check Information
Group: C++
Language: C++
Acronym: FRV

See Also

Polyspace Results
Initialized return value

 Function not called

4-31

Function not called
Function is defined but not called

Description

This check on a function definition determines if the function is called anywhere in the
code. This check is disabled if your code does not contain a main function.

Use this check to satisfy ISO 26262 requirements about function coverage. For example,
see table 15 of ISO 26262, part 6.

Note: This check is not turned on by default. To turn on this check, you must specify the
appropriate analysis option. For more information, see “Detect uncalled functions (C/C+
+)” on page 1-111.

Diagnosing This Check

“Review and Fix Function Not Called Checks”

Examples

Function not called

#define max 100

int var;

int getValue(void);

int getSaturation(void);

void main() {

 int saturation = getSaturation(),val;

 for(int index=1; index<=max; index++) {

 val = getValue();

 if(val>0 && val<10)

 var += val;

 if(var > saturation)

4 Check Reference

4-32

 var=0;

 }

}

void reset() {

 var=0;

}

In this example, the function reset is defined but not called. Therefore, a gray
Function not called check appears on the definition of reset.

Correction: Call Function

One possible correction is to call the function reset. In this example, the function call
reset serves the same purpose as instruction var=0;. Therefore, replace the instruction
with the function call.

#define max 100

int var;

int getValue(void);

int getSaturation(void);

void main() {

 int saturation = getSaturation(),val;

 for(int index=1; index<=max; index++) {

 val = getValue();

 if(val>0 && val<10)

 var += val;

 if(var > saturation)

 reset();

 }

}

void reset() {

 var=0;

}

Function Called from Another Uncalled Function

#define max 100

int var;

int numberOfResets;

int getValue();

int getSaturation();

 Function not called

4-33

void main() {

 int saturation = getSaturation(),val;

 for(int index=1; index<=max; index++) {

 val = getValue();

 if(val>0 && val<10)

 var += val;

 if(var > saturation) {

 numberOfResets++;

 var=0;

 }

 }

}

void reset() {

 updateCounter();

 var=0;

}

void updateCounter() {

 numberOfResets++;

}

In this example, the function reset is defined but not called. Since the function
updateCounter is called only from reset, a gray Function not called error appears
on the definition of updateCounter.

Correction: Call Function

One possible correction is to call the function reset. In this example, the function
call reset serves the same purpose as the instructions in the branch of if(var >
saturation). Therefore, replace the instructions with the function call.

#define max 100

int var;

int numberOfResets;

int getValue(void);

int getSaturation(void);

void main() {

 int saturation = getSaturation(),val;

 for(int index=1; index<=max; index++) {

 val = getValue();

4 Check Reference

4-34

 if(val>0 && val<10)

 var += val;

 if(var > saturation)

 reset();

 }

}

void reset() {

 updateCounter();

 var=0;

}

void updateCounter() {

 numberOfResets++;

}

Check Information
Group: Data flow
Language: C | C++
Acronym: FNC

See Also

Polyspace Analysis Options
“Detect uncalled functions (C/C++)” on page 1-111

Polyspace Results
Function not reachable

 Illegally dereferenced pointer

4-35

Illegally dereferenced pointer
Pointer is dereferenced outside bounds

Description

This check on a pointer dereference determines whether the pointer points outside its
bounds.

When you assign an address to a pointer, a block of memory is associated with the
pointer. You cannot access memory beyond that block using the pointer.

Diagnosing This Check

“Review and Fix Illegally Dereferenced Pointer Checks”

Examples

Pointer points outside array bounds

#define Size 1024

int input(void);

void main() {

 int arr[Size];

 int *p = arr;

 for (int index = 0; index < Size ; index++, p++) {

 *p = input();

 }

 *p = input();

}

In this example:

• Before the for loop, p points to the beginning of the array arr.

4 Check Reference

4-36

• After the for loop, p points outside the array.

The Illegally dereferenced pointer check on dereference of p after the for loop
produces a red error.

Correction — Remove illegal dereference

One possible correction is to remove the illegal dereference of p after the for loop.

#define Size 1024

int input(void);

void main() {

 int arr[Size];

 int *p = arr;

 for (int index = 0; index < Size ; index++, p++) {

 *p = input();

 }

}

Pointer points outside structure field

typedef struct S {

 int f1;

 int f2;

 int f3;

} S;

void Initialize(int *ptr) {

 *ptr = 0;

 *(ptr+1) = 0;

 *(ptr+2) = 0;

}

void main(void) {

 S myStruct;

 Initialize(&myStruct.f1);

}

In this example, in the body of Initialize, ptr is an int pointer that points to the
first field of the structure. When you attempt to access the second field through ptr, the
Illegally dereferenced pointer check produces a red error.

 Illegally dereferenced pointer

4-37

Correction — Avoid memory access outside structure field

One possible correction is to pass a pointer to the entire structure to Initialize.

typedef struct S {

 int f1;

 int f2;

 int f3;

} S;

void Initialize(S* ptr) {

 ptr->f1 = 0;

 ptr->f2 = 0;

 ptr->f3 = 0;

}

void main(void) {

 S myStruct;

 Initialize(&myStruct);

}

NULL pointer is dereferenced

#include<stdlib.h>

void main() {

 int *ptr=NULL;

 *ptr=0;

}

In this example, ptr is assigned the value NULL. Therefore when you dereference ptr,
the Illegally dereferenced pointer check produces a red error.

Correction — Avoid NULL pointer dereference

One possible correction is to initialize ptr with the address of a variable instead of NULL.

void main() {

 int var;

 int *ptr=&var;

 *ptr=0;

}

4 Check Reference

4-38

Offset on NULL pointer

int getOffset(void);

void main() {

 int *ptr = (int*) 0 + getOffset();

 if(ptr != (int*)0)

 *ptr = 0;

}

In this example, although an offset is added to (int*) 0, Polyspace does not treat
the result as a valid address. Therefore when you dereference ptr, the Illegally
dereferenced pointer check produces a red error.

Bit field type is incorrect

struct flagCollection {

 unsigned int flag1: 1;

 unsigned int flag2: 1;

 unsigned int flag3: 1;

 unsigned int flag4: 1;

 unsigned int flag5: 1;

 unsigned int flag6: 1;

 unsigned int flag7: 1;

};

char getFlag(void);

int main()

{

 unsigned char myFlag = getFlag();

 struct flagCollection* myFlagCollection;

 myFlagCollection = (struct flagCollection *) &myFlag;

 if (myFlagCollection -> flag1 == 1)

 return 1;

 return 0;

}

In this example:

• The fields of flagCollection have type unsigned int. Therefore, a
flagCollection structure requires 32 bits of memory in a 32-bit architecture even
though the fields themselves occupy 7 bits.

 Illegally dereferenced pointer

4-39

• When you cast a char address &myFlag to a flagCollection pointer
myFlagCollection, you assign only 8 bits of memory to the pointer. Therefore,
the Illegally dereferenced pointer check on dereference of myFlagCollection
produces a red error.

Correction — Use correct type for bit fields

One possible correction is to use unsigned char as field type of flagCollection
instead of unsigned int. In this case:

• The structure flagCollection requires 8 bits of memory.
• When you cast the char address &myFlag to the flagCollection pointer

myFlagCollection, you also assign 8 bits of memory to the pointer. Therefore, the
Illegally dereferenced pointer check on dereference of myFlagCollection is
green.

struct flagCollection {

 unsigned char flag1: 1;

 unsigned char flag2: 1;

 unsigned char flag3: 1;

 unsigned char flag4: 1;

 unsigned char flag5: 1;

 unsigned char flag6: 1;

 unsigned char flag7: 1;

};

char getFlag(void);

int main()

{

 unsigned char myFlag = getFlag();

 struct flagCollection* myFlagCollection;

 myFlagCollection = (struct flagCollection *) &myFlag;

 if (myFlagCollection -> flag1 == 1)

 return 1;

 return 0;

}

Return value of malloc is not checked for NULL

void main(void)

{

4 Check Reference

4-40

 char *p = (char*)malloc(1);;

 char *q = p;

 *q = 'a';

}

In this example, malloc can return NULL to p. Therefore, when you assign p to q and
dereference q, the Illegally dereferenced pointer check produces a red error.

Correction — Check return value of malloc for NULL

One possible correction is to check p for NULL before derferencing q.

#include<stdlib.h>

void main(void)

{

 char *p = (char*)malloc(1);;

 char *q = p;

 if(p!=NULL) *q = 'a';

}

Pointer to union gets insufficient memory from malloc

#include <stdlib.h>

enum typeName {CHAR,INT};

typedef struct {

 enum typeName myTypeName;

 union {

 char myChar;

 int myInt;

 } myVar;

} myType;

void main() {

 myType* myTypePtr;

 myTypePtr = (myType*)malloc(sizeof(int) + sizeof(char));

 if(myTypePtr != NULL) {

 myTypePtr->myTypeName = INT;

 }

}

In this example:

 Illegally dereferenced pointer

4-41

• Because the union myVar has an int variable as a field, it must be assigned 4 bytes
in a 32-bit architecture. Therefore, the structure myType must be assigned 4+4 = 8
bytes.

• malloc returns sizeof(int) + sizeof(char)=4+1=5 bytes of memory to
myTypePtr, a pointer to a myType structure. Therefore, when you dereference
myTypePtr, the Illegally dereferenced pointer check returns a red error.

Correction — Assign sufficient memory to pointer

One possible correction is to assign 8 bytes of memory to myTypePtr before dereference.

#include <stdlib.h>

enum typeName {CHAR,INT};

typedef struct {

 enum typeName myTypeName;

 union {

 char myChar;

 int myInt;

 } myVar;

} myType;

void main() {

 myType* myTypePtr;

 myTypePtr = (myType*)malloc(sizeof(int) + sizeof(int));

 if(myTypePtr != NULL) {

 myTypePtr->myTypeName = INT;

 }

}

Structure is allocated memory partially

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} rectangle;

typedef struct {

 int length;

 int breadth;

 int height;

4 Check Reference

4-42

} cuboid;

void main() {

 cuboid *cuboidPtr = malloc(sizeof(rectangle));

 if(cuboidPtr!=NULL) {

 cuboidPtr->length = 10;

 cuboidPtr->breadth = 10;

 }

}

In this example, cuboidPtr obtains sufficient memory to accommodate two of its
fields. Because the ANSI C standards do not allow such partial memory allocations, the
Illegally dereferenced pointer check on dereference of cuboidPtr produce a red
error.

Correction — Allocate full memory

To observe ANSI C standards, cuboidPtr must be allocated full memory.

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} rectangle;

typedef struct {

 int length;

 int breadth;

 int height;

} cuboid;

void main() {

 cuboid *cuboidPtr = malloc(sizeof(cuboid));

 if(cuboidPtr!=NULL) {

 cuboidPtr->length = 10;

 cuboidPtr->breadth = 10;

 }

}

Correction — Use Polyspace analysis option

You can allow partial memory allocation for structures, yet not have a red Illegally
dereferenced pointer error. To allow partial memory allocation, on the Configuration
pane, under Check Behavior, select Allow incomplete or partial allocation of
structures.

 Illegally dereferenced pointer

4-43

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} rectangle;

typedef struct {

 int length;

 int breadth;

 int height;

} cuboid;

void main() {

 cuboid *cuboidPtr = malloc(sizeof(rectangle));

 if(cuboidPtr!=NULL) {

 cuboidPtr->length = 10;

 cuboidPtr->breadth = 10;

 }

}

Pointer to one field of structure points to another field

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} square;

void main() {

 square mySquare;

 char* squarePtr = &mySquare.length;

//Assign zero to mySquare.length byte by byte

 for(int byteIndex=1; byteIndex<=4; byteIndex++) {

 *squarePtr=0;

 squarePtr++;

 }

//Assign zero to first byte of mySquare.breadth

 *squarePtr=0;

}

In this example, although squarePtr is a char pointer, it is assigned the address of the
integer mySquare.length. Because:

4 Check Reference

4-44

• char occupies 1 byte,
• int occupies 4 bytes in a 32–bit architecture,

squarePtr can access the four bytes of mySquare.length through pointer arithmetic.
But when it accesses the first byte of another field mySquare.breadth, the Illegally
dereferenced pointer check produces a red error.

Correction — Assign address of structure instead of field

One possible correction is to assign squarePtr the address of the full structure
mySquare instead of mySquare.length. squarePtr can then access all the bytes of
mySquare through pointer arithmetic.

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} square;

void main() {

 square mySquare;

 char* squarePtr = &mySquare;

//Assign zero to mySquare.length byte by byte

 for(int byteIndex=1; byteIndex<=4; byteIndex++) {

 *squarePtr=0;

 squarePtr++;

 }

//Assign zero to first byte of mySquare.breadth

 *squarePtr=0;

}

Correction — Use Polyspace analysis option

You can use a pointer to navigate across the fields of a structure and not produce a red
Illegally dereferenced pointer error. To allow such navigation, on the Configuration
pane, under Check Behavior, select Enable pointer arithmetic across fields.

#include<stdlib.h>

typedef struct {

 int length;

 int breadth;

} square;

 Illegally dereferenced pointer

4-45

void main() {

 square mySquare;

 char* squarePtr = &mySquare.length;

//Assign zero to mySquare.length byte by byte

 for(int byteIndex=1; byteIndex<=4; byteIndex++) {

 *squarePtr=0;

 squarePtr++;

 }

//Assign zero to first byte of mySquare.breadth

 *squarePtr=0;

}

Function returns pointer to local variable

void func2(int *ptr) {

 *ptr = 0;

}

int* func1(void) {

 int ret = 0;

 return &ret ;

}

void main(void) {

 int* ptr = func1() ;

 func2(ptr) ;

}

In the following code, ptr points to ret. Because the scope of ret is limited to func1,
when ptr is accessed in func2, the access is illegal. Polyspace Code Prover produces a
red Illegally dereferenced pointer check on *ptr.

Check Information
Group: Static memory
Language: C | C++
Acronym: IDP

4 Check Reference

4-46

See Also

Polyspace Analysis Options
“Allow incomplete or partial allocation of structures (C)” on page 1-107 | “Enable pointer
arithmetic across fields (C)” on page 1-105 | -detect-pointer-escape

Polyspace Results
Non-initialized pointer

 Initialized return value

4-47

Initialized return value
C function does not return value when expected

Description

This check determines whether a function with a return type other than void returns a
value. This check appears on every function call.

Diagnosing This Check

“Review and Fix Initialized Return Value Checks”

Examples

Function does not return value for given input

#include <stdio.h>

int input(void);

int inputRep(void);

int reply(int msg) {

 int rep = inputRep();

 if (msg > 0) return rep;

}

void main(void) {

 int ch = input(), ans;

 if (ch<=0)

 ans = reply(0);

 else

 ans = reply(ch);

 printf("The answer is %d.",ans);

}

In this example, for the function call reply(0), there is no return value. Therefore the
Initialized return value check returns a red error. The second call reply(ch) always
returns a value. Therefore, the check on this call is green.

4 Check Reference

4-48

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>

int input();

int inputRep();

int reply(int msg) {

 int rep = inputRep();

 if (msg > 0) return rep;

 return 0;

}

void main(void) {

 int ch = input(), ans;

 if (ch<=0)

 ans = reply(0);

 else

 ans = reply(ch);

 printf("The answer is %d.",ans);

}

Function does not return value for some inputs

#include <stdio.h>

int input();

int inputRep(int);

int reply(int msg) {

 int rep = inputRep(msg);

 if (msg > 0) return rep;

}

void main(void) {

 int ch = input(), ans;

 if (ch<10)

 ans = reply(ch);

 else

 ans = reply(10);

 printf("The answer is %d.",ans);

}

 Initialized return value

4-49

In this example, in the first branch of the if statement, the value of ch can be divided
into two ranges:

• ch < = 0: For the function call reply(ch), there is no return value.
• ch > 0 and ch < 10: For the function call reply(ch), there is a return value.

Therefore the Initialized return value check returns an orange error on reply(ch).

Correction — Return value for all inputs

One possible correction is to return a value for all inputs to reply().

#include <stdio.h>

int input();

int inputRep(int);

int reply(int msg) {

 int rep = inputRep(msg);

 if (msg > 0) return rep;

 return 0;

}

void main(void) {

 int ch = input(), ans;

 if (ch<10)

 ans = reply(ch);

 else

 ans = reply(10);

 printf("The answer is %d.",ans);

}

Check Information
Group: Data flow
Language: C
Acronym: IRV

See Also

Polyspace Analysis Options
“Disable checks for non-initialization (C/C++)” on page 1-103

4 Check Reference

4-50

Polyspace Results
Function returns a value

 Inspection points

4-51

Inspection points
Variable range information appears

Description

This user-specified check provides range information on specified variables. If you want
to know the range of the variables var1, var2, ... at a certain point in the code,
place the line #pragma var1 var2 ... at that point. After verification, to see the
variable range, place your cursor on the variable name.

Note: The tooltip indicates the range that Polyspace considers, not the actual variable
range. Because of approximations, the variable range that Polyspace considers can
sometimes be a superset of the actual variable range. Use this check to help understand
the cause of other Polyspace checks.

Examples

View range of variable

int input();

void main() {

 int num=input();

 int i;

 if(num>0 && num<10) {

 for(i=0; i<20; i++)

 num+=i;

#pragma Inspection_Point num

 }

#pragma Inspection_Point num

}

In this example, if you place your cursor on the variable num in the #pragma statements,
you can view its range. In the first case, the tooltip shows the range [191 .. 199]. In
the second case, the tooltip shows the range [-231 .. 0] or [10 .. 231 - 1]. The

4 Check Reference

4-52

second range shows that Polyspace considers the return value of input() to be in the
full range of type int.

Check Information
Group: Other
Language: C
Acronym: IPT

 Invalid use of standard library routine

4-53

Invalid use of standard library routine

Standard library function is called with invalid arguments

Description

This check on a standard library function call determines whether the function is called
with valid arguments. For some floating point routines, this check also determines if the
function call produces an overflow.

Diagnosing This Check

“Review and Fix Invalid Use of Standard Library Routine Checks”

Examples

Invalid use of standard library float routine

#include<assert.h>

#include<math.h>

#define HALF_PI 1.5707963267948966

#define LARGE_EXP 710

enum operation {

 ASIN,

 ACOS,

 TAN,

 SQRT,

 LOG,

 EXP,

 ACOSH,

 ATANH

};

enum operation getOperation(void);

double getVal(void);

4 Check Reference

4-54

void main() {

 enum operation myOperation = getOperation();

 double myVal=getVal(), res;

 switch(myOperation) {

 case ASIN:

 assert(myVal <- 1.0 || myVal > 1.0);

 res = asin(myVal);

 break;

 case ACOS:

 assert(myVal < -1.0 || myVal > 1.0);

 res = acos(myVal);

 break;

 case TAN:

 assert(myVal == HALF_PI);

 res = tan(myVal);

 break;

 case SQRT:

 assert(myVal < 0.0);

 res = sqrt(myVal);

 break;

 case LOG:

 assert(myVal <= 0.0);

 res = log(myVal);

 break;

 case EXP:

 assert(myVal > LARGE_EXP);

 res = exp(myVal);

 break;

 case ACOSH:

 assert(myVal < 1.0);

 res = acosh(myVal);

 break;

 case ATANH:

 assert(myVal <= -1.0 || myVal >= 1.0);

 res = atanh(myVal);

 break;

 }

}

In this example, following each assert statement, Polyspace considers that myVal
contains only those values that make the assert condition true. For example, following
assert(myVal < 1.0);, Polyspace considers that myVal contains values less than 1.0.

 Invalid use of standard library routine

4-55

When myVal is used as argument in a standard library function, its values are invalid for
the function. Therefore, the Invalid use of standard library routine check produces a
red error.

For a list of functions, see “Standard Library Float Routines Checked for Argument
Validity”.

Invalid use of standard library memory routine

#include <string.h>

#include <stdio.h>

char* Copy_First_Six_Letters(void) {

 char str1[10],str2[5];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 return str2;

}

In this example, the size of string str2 is 5, but 6 characters of string str1 are copied
into str2 using the memcpy function. Therefore, the Invalid use of standard library
routine check on the call to memcpy produces a red error.

Correction — Call function with valid arguments

One possible correction is to adjust the size of str2 so that it accommodates the
characters copied with the memcpy function.

#include <string.h>

#include <stdio.h>

char* Copy_First_Six_Letters(void) {

 char str1[10],str2[6];

 printf("Enter string:\n");

 scanf("%s",str1);

 memcpy(str2,str1,6);

 return str2;

}

Invalid use of standard library string routine

#include <stdio.h>

4 Check Reference

4-56

char* Copy_String(void)

{

 char *res;

 char gbuffer[5],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);

}

In this example, the string text is larger in size than gbuffer. Therefore, when you
copy text into gbuffer. the Invalid use of standard library routine check on the
call to strcpy produces a red error.

Correction — Call function with valid arguments

One possible correction is to declare the destination string gbuffer with equal or larger
size than the source string text.

#include <stdio.h>

char* Copy_String(void)

{

 char *res;

 char gbuffer[20],text[20]="ABCDEFGHIJKL";

 res=strcpy(gbuffer,text);

 return(res);

}

Check Information
Group: Other
Language: C | C++
Acronym: STD_LIB

 Non-initialized local variable

4-57

Non-initialized local variable
Local variable is not initialized before being read

Description

This check occurs for every local variable read. It determines whether the variable being
read is initialized.

Diagnosing This Check

“Review and Fix Non-initialized Local Variable Checks”

Examples

Non-initialized variable used on right side of assignment operator

#include <stdio.h>

void main(void) {

 int sum;

 for(int i=1;i <= 10 ; i++)

 sum+=i;

 printf("The sum of the first 10 natural numbers is %d.", sum);

 }

The statement sum+=i; is the shorthand for sum=sum+i;. Because sum is used on the
right side of an expression before being initialized, the Non-initialized local variable
check returns a red error.

Correction — Initialize variable before using on right side of assignment

One possible correction is to initialize sum before the for loop.

#include <stdio.h>

void main(void) {

4 Check Reference

4-58

 int sum=0;

 for(int i=1;i <= 10 ; i++)

 sum+=i;

 printf("The sum of the first 10 natural numbers is %d.", sum);

 }

Non-initialized variable used with relational operator

#include <stdio.h>

int getTerm();

void main(void) {

 int count,sum=0,term;

 while(count <= 10 && sum <1000) {

 count++;

 term = getTerm();

 if(term > 0 && term <= 1000) sum += term;

 }

 printf("The sum of 10 terms is %d.", sum);

 }

In this example, the variable count is not initialized before the comparison count <=
10. Therefore, the Non-initialized local variable check returns a red error.

Correction — Initialize variable before using with relational operator

One possible correction is to initialize count before the comparison count <= 10.

#include <stdio.h>

int getTerm();

void main(void) {

 int count=1,sum=0,term;

 while(count <= 10 && sum <1000) {

 count++;

 term = getTerm();

 if(term > 0 && term <= 1000) sum += term;

 }

 Non-initialized local variable

4-59

 printf("The sum of 10 terms is %d.", sum);

 }

Non-initialized variable passed to function

#include <stdio.h>

int getShift();

int shift(int var) {

 int shiftVal = getShift();

 if(shiftVal > 0 && shiftVal < 1000)

 return(var+shiftVal);

 return 1000;

 }

void main(void) {

 int initVal;

 printf("The result of a shift is %d",shift(initVal));

 }

In this example, initVal is not initialized when it is passed to shift(). Therefore,
the Non-initialized local variable check returns a red error. Because of the red error,
Polyspace does not verify the operations in shift().

Correction — Initialize variable before passing to function

One possible correction is to initialize initVal before passing to shift(). initVal can
be initialized through an input function. To avoid an overflow, the value returned from
the input function must be within bounds.

#include <stdio.h>

int getShift();

int getInit();

int shift(int var) {

 int shiftVal = getShift();

 if(shiftVal > 0 && shiftVal < 1000)

 return(var+shiftVal);

 return 1000;

 }

void main(void) {

 int initVal=getInit();

4 Check Reference

4-60

 if(initVal >0 && initVal < 1000)

 printf("The result of a shift is %d",shift(initVal));

 else

 printf("Value must be between 0 and 1000.");

 }

Non-initialized array element

 #include <stdio.h>

 #define arrSize 19

 void main(void)

 {

 int arr[arrSize],indexFront, indexBack;

 for(indexFront = 0,indexBack = arrSize - 1; indexFront < arrSize/2;

 indexFront++, indexBack--) {

 arr[indexFront] = indexFront;

 arr[indexBack] = arrSize - indexBack - 1;

 }

 printf("The array elements are: \n");

 for(indexFront = 0; indexFront< arrSize; indexFront ++)

 printf("Element[%d]: %d", indexFront, arr[indexFront]);

 }

In this example, in the first for loop:

• indexFront runs from 0 to 8.
• indexBack runs from 18 to 10.

Therefore, arr[9] is not initialized. In the second for loop, when arr[9] is passed to
printf, the Non-initialized local variable check returns an error. The error is orange
because the check returns an error only in one of the loop runs.

Due to the orange error in one of the loop runs, a red Non-terminating loop error
appears on the second for loop.

Correction — Initialize variable before passing to function

One possible correction is to keep the first for loop intact and initialize arr[9] outside
the for loop.

 #include <stdio.h>

 #define arrSize 19

 Non-initialized local variable

4-61

 void main(void)

 {

 int arr[arrSize],indexFront, indexBack;

for(indexFront = 0,indexBack = arrSize - 1; indexFront < arrSize/2;

 indexFront++, indexBack--) {

 arr[indexFront] = indexFront;

 arr[indexBack] = arrSize - indexBack - 1;

 }

 arr[indexFront] = indexFront;

 printf("The array elements are: \n");

 for(indexFront = 0; indexFront< arrSize; indexFront ++)

 printf("Element[%d]: %d", indexFront, arr[indexFront]);

 }

Non-initialized structure

typedef struct S {

 int integerField;

 char characterField;

}S;

void operateOnStructure(S);

void operateOnStructureField(int);

void main() {

 S myStruct;

 operateOnStructure(myStruct);

 operateOnStructureField(myStruct.integerField);

}

In this example, the structure myStruct is not initialized. Therefore, when the structure
myStruct is passed to the function operateOnStructure, a Non-initialized local
variable check on the structure appears red.

Correction— Initialize structure

One possible correction is to initialize the structure myStruct before passing it to a
function.

typedef struct S {

 int integerField;

 char characterField;

}S;

4 Check Reference

4-62

void operateOnStructure(S);

void operateOnStructureField(int);

void main() {

 S myStruct = {0,' '};

 operateOnStructure(myStruct);

 operateOnStructureField(myStruct.integerField);

}

Partially initialized structure — All used fields initialized

typedef struct S {

 int integerField;

 char characterField;

 double doubleField;

}S;

int getIntegerField(void);

char getCharacterField(void);

void printIntegerField(int);

void printCharacterField(char);

void printFields(S s) {

 printIntegerField(s.integerField);

 printCharacterField(s.characterField);

}

void main() {

 S myStruct;

 myStruct.integerField = getIntegerField();

 myStruct.characterField = getCharacterField();

 printFields(myStruct);

}

In this example, the Non-initialized local variable check on myStruct is green
because:

• The fields integerField and characterField that are used are both initialized.
• Although the field doubleField is not initialized, there is no read or write operation

on the field doubleField in the code.

 Non-initialized local variable

4-63

To determine which fields are checked for initialization:

1 Select the check on the Results Summary pane or Source pane.
2 View the message on the Result Details pane.

Partially initialized structure — Some used fields initialized

typedef struct S {

 int integerField;

 char characterField;

 double doubleField;

}S;

int getIntegerField(void);

char getCharacterField(void);

void printIntegerField(int);

void printCharacterField(char);

void printDoubleField(double);

void printFields(S s) {

 printIntegerField(s.integerField);

 printCharacterField(s.characterField);

 printDoubleField(s.doubleField);

}

void main() {

 S myStruct;

 myStruct.integerField = getIntegerField();

 myStruct.characterField = getCharacterField();

 printFields(myStruct);

}

In this example, the Non-initialized local variable check on myStruct is orange
because:

• The fields integerField and characterField that are used are both initialized.
• The field doubleField is not initialized and there is a read operation on

doubleField in the code.

To determine which fields are checked for initialization:

4 Check Reference

4-64

1 Select the check on the Results Summary pane or Source pane.
2 View the message on the Result Details pane.

Check Information
Group: Data flow
Language: C | C++
Acronym: NIVL

See Also

Polyspace Analysis Options
“Disable checks for non-initialization (C/C++)” on page 1-103

Polyspace Results
Non-initialized pointer | Non-initialized variable

 Non-initialized pointer

4-65

Non-initialized pointer
Pointer is not initialized before being read

Description

This check occurs for every pointer read. It determines whether the pointer being read is
initialized.

Diagnosing This Check

“Review and Fix Non-initialized Pointer Checks”

Examples

Non-initialized pointer passed to function

int assignValueToAddress(int *ptr) {

 *ptr = 0;

}

void main() {

 int* newPtr;

 assignValueToAddress(newPtr);

}

In this example, newPtr is not initialized before it is passed to
assignValueToAddress().

Correction — Initialize pointer before passing to function

One possible correction is to assign newPtr an address before passing to
assignValueToAddress().

int assignValueToAddress(int *ptr) {

 *ptr = 0;

4 Check Reference

4-66

}

void main() {

 int val;

 int* newPtr = &val;

 assignValueToAddress(newPtr);

}

Non-initialized pointer to structure

#include <stdlib.h>

#define stackSize 25

typedef struct stackElement {

 int value;

 int *prev;

}stackElement;

int input();

void main() {

 stackElement *stackTop;

 for (int count = 0; count < stackSize; count++) {

 if(stackTop!=NULL) {

 stackTop -> value = input();

 stackTop -> prev = stackTop;

 }

 stackTop = (stackElement*)malloc(sizeof(stackElement));

 }

}

In this example, in the first run of the for loop, stackTop is not initialized and does not
point to a valid address. Therefore, the Non-initialized pointer check on stackTop!
=NULL returns a red error.

Correction — Initialize pointer before dereference

One possible correction is to initialize stackTop through malloc() before the check
stackTop!=NULL.

#include <stdlib.h>

#define stackSize 25

 Non-initialized pointer

4-67

typedef struct stackElement {

 int value;

 int *prev;

}stackElement;

int input();

void main() {

 stackElement *stackTop;

 for (int count = 0; count < stackSize; count++) {

 stackTop = (stackElement*)malloc(sizeof(stackElement));

 if(stackTop!=NULL) {

 stackTop -> value = input();

 stackTop -> prev = stackTop;

 }

 }

}

Non-initialized char* pointer used to store string

#include <stdio.h>

void main() {

 char *str;

 scanf("%s",str);

}

In this example, str does not point to a valid address. Therefore, when the scanf
function reads a string from the standard input to str, the Non-initialized pointer
check returns a red error.

Correction — Use char array instead of char* pointer

One possible correction is to declare str as a char array. This declaration assigns an
address to the char* pointer associated with the array name str. You can then use the
pointer as input to scanf.

#include <stdio.h>

void main() {

 char str[10];

 scanf("%s",str);

4 Check Reference

4-68

}

Non-initialized array of char* pointers used to store variable-size
strings

#include <stdio.h>

void assignDataBaseElement(char** str) {

 scanf("%s",*str);

}

void main() {

 char *dataBase[20];

 for(int count = 1; count < 20 ; count++) {

 assignDataBaseElement(&dataBase[count]);

 printf("Database element %d : %s",count,dataBase[count]);

 }

}

In this example, dataBase is an array of char* pointers. In each run of
the for loop, an element of dataBase is passed via pointers to the function
assignDataBaseElement(). The element passed is not initialized and does not contain
a valid address. Therefore, when the element is used to store a string from standard
input, the Non-initialized pointer check returns a red error.

Correction — Initialize char* pointers through calloc

One possible correction is to initialize each element of dataBase through the calloc()
function before passing it to assignDataBaseElement(). The initialization through
calloc() allows the char pointers in dataBase to point to strings of varying size.

#include <stdio.h>

#include <stdlib.h>

void assignDataBaseElement(char** str) {

 scanf("%s",*str);

}

int inputSize();

void main() {

 char *dataBase[20];

 Non-initialized pointer

4-69

 for(int count = 1; count < 20 ; count++) {

 dataBase[count] = (char*)calloc(inputSize(),sizeof(char));

 assignDataBaseElement(&dataBase[count]);

 printf("Database element %d : %s",count,dataBase[count]);

 }

}

Check Information
Group: Data flow
Language: C | C++
Acronym: NIP

See Also

Polyspace Analysis Options
“Disable checks for non-initialization (C/C++)” on page 1-103

Polyspace Results
Non-initialized local variable | Non-initialized variable

4 Check Reference

4-70

Non-initialized variable

Variable other than local variable is not initialized before being read

Description

For variables other than local variables, this check occurs on every variable read. It
determines whether the variable being read is initialized.

By default, Polyspace considers that global variables are initialized according to ANSI C
standards. For instance, the default initial value of an int variable is 0.

To prevent this default assumption during analysis, on the Configuration pane, select
Inputs & Stubbing. Select Ignore default initialization of global variables. This
option is not available for C++ code.

Diagnosing This Check

“Review and Fix Non-initialized Variable Checks”

Examples

Non-initialized global variable

int globVar;

int getVal();

void main() {

 int val = getVal();

 if(val>=0 && val<= 100)

 globVar += val;

}

In this example, globVar does not have an initial value when incremented. Therefore,
the Non-initialized variable check produces a red error.

 Non-initialized variable

4-71

Correction — Initialize global variable before use

One possible correction is to initialize the global variable globVar before use.

int globVar;

int getVal();

void main() {

 int val = getVal();

 if(val>=0 && val<= 100)

 globVar += val;

}

Check Information
Group: Data flow
Language: C | C++
Acronym: NIV

See Also

Polyspace Analysis Options
“Ignore default initialization of global variables (C/C++)” on page 1-35 | “Disable checks
for non-initialization (C/C++)” on page 1-103

Polyspace Results
Non-initialized local variable | Non-initialized pointer

4 Check Reference

4-72

Non-null this-pointer in method
this pointer is null during member function call

Description

This check on a this pointer dereference determines whether the pointer is NULL.

Examples

Pointer to object is NULL during member function call

#include <stdlib.h>

class Company {

 public:

 Company(int initialNumber):numberOfClients(initialNumber) {}

 void addNewClient() {

 numberOfClients++;

 }

 protected:

 int numberOfClients;

};

void main() {

 Company* myCompany = NULL;

 myCompany->addNewClient();

}

In this example, the pointer myCompany is initialized to NULL. Therefore when the
pointer is used to call the member function addNewClient, the Non-null this-pointer
in method produces a red error.

Correction — Initialize pointer with valid address

One possible correction is to initialize myCompany with a valid memory address using the
new operator.

#include <stdlib.h>

class Company {

 Non-null this-pointer in method

4-73

 public:

 Company(int initialNumber):numberOfClients(initialNumber) {}

 void addNewClient() {

 numberOfClients++;

 }

 protected:

 int numberOfClients;

};

void main() {

 Company* myCompany = new Company(0);

 myCompany->addNewClient();

}

Check Information
Group: C++
Language: C++
Acronym: NNT

4 Check Reference

4-74

Non-terminating call

Called function does not return to calling context

Description

This check on a function call appears when the following conditions hold:

• The called function does not return to its calling context. The call leads to a definite
run-time error or a process termination function like exit() in the function body.

• There are other calls to the same function that do not lead to a definite error or
process termination function in the function body.

When only a fraction of calls to a function lead to a definite error, this check helps
identify those function calls. In the function body, even though a definite error occurs, the
error appears in orange instead of red because the verification results in a function body
are aggregated over all function calls. To indicate that a definite error has occurred, a red
Non-terminating call check is shown on the function call instead.

Otherwise, if all the calls to a function lead to a definite error or process termination
function in the function body, the Non-terminating call error is not displayed. The
error appears in red in the function body and a dashed red underline appears on the
function calls. However, following the function call, like other red errors, Polyspace does
not analyze the remaining code in the same scope as the function call.

• To find the source of error, on the Source pane, place your cursor on the function call
and view the tooltip.

• Navigate to the source of error in the function body. Right-click the function call and
select Go to Cause if the option exists.

Diagnosing This Check

“Review and Fix Non-Terminating Call Checks”

 Non-terminating call

4-75

Examples

Dashed red underline on function call

#include<stdio.h>

double ratio(int num, int den) {

 return(num/den);

}

void main() {

 int i,j;

 i=2;

 j=0;

 printf("%.2f",ratio(i,j));

}

In this example, a red Division by zero error appears in the body of ratio. This
Division by zero error in the body of ratio causes a dashed red underline on the call to
ratio.

Red underline on function call

#include<stdio.h>

double ratio(int num, int den) {

 return(num/den);

}

int inputCh();

void main() {

 int i,j,ch=inputCh();

 i=2;

 if(ch==1) {

 j=0;

 printf("%.2f",ratio(i,j));

 }

 else {

 j=2;

 printf("%.2f",ratio(i,j));

 }

}

4 Check Reference

4-76

In this example, there are two calls to ratio. In the first call, a Division by zero error
occurs in the body of ratio. In the second call, Polyspace does not find errors. Therefore,
combining the two calls, an orange Division by zero check appears in the body of
ratio. A red Non-terminating call check on the first call indicates the error.

Red underline on call through function pointer

typedef void (*f)(void);

// function pointer type

void f1(void) {

 int x;

 x++;

}

void f2(void) { }

void f3(void) { }

f fptr_array[3] = {f1,f2,f3};

unsigned char getIndex(void);

void main(void) {

 unsigned char index = getIndex() % 3;;

 // Index is between O and 2

 fptr_array[index]();

 fptr_array[index]();

}

In this example, because index can lie between 0 and 2, the first fptr_array[index]
() can call f1, f2 or f3. If index is zero, the statement calls f1. f1 contains a red Non-
initialized local variable error, therefore, a dashed red error appears on the function
call. Unlike other red errors, the verification continues.

After this statement, the software considers that index is either 1 or 2. An error does not
occur on the second fptr_array[index]().

Check Information
Group: Control flow
Language: C | C++
Acronym: NTC

 Non-terminating loop

4-77

Non-terminating loop
Loop does not terminate or contains an error

Description

This check on a loop determines if the loop has one of the following issues:

• The loop definitely does not terminate.

The check appears only if Polyspace cannot detect an exit path from the loop. For
example, if the loop appears in a function and the loop termination condition is met
for some function inputs, the check does not appear, even though the condition might
not be met for some other inputs.

• The loop contains a definite error in one its iterations.

Even though a definite error occurs in one loop iteration, because the verification
results in a loop body are aggregated over all loop iterations, the error shows as an
orange check in the loop body. To indicate that a definite failure has occurred, a red
Non-terminating loop check is shown on the loop command.

Unlike other checks, this check appears only when a definite error occurs. In your
verification results, the check is always red.

Diagnosing This Check

“Review and Fix Non-Terminating Loop Checks”

Examples

Loop does not terminate

#include<stdio.h>

void main() {

 int i=0;

4 Check Reference

4-78

 while(i<10) {

 printf("%d",i);

 }

}

In this example, in the while loop, i does not increase. Therefore, the test i<10 never
fails.

Correction — Ensure Loop Termination

One possible correction is to update i such that the test i<10 fails after some loop
iterations and the loop terminates.

#include<stdio.h>

void main() {

 int i=0;

 while(i<10) {

 printf("%d",i);

 i++;

 }

}

Loop contains an out of bounds array index error

void main() {

 int arr[20];

 for(int i=0; i<=20; i++) {

 arr[i]=0;

 }

}

In this example, the last run of the for loop contains an Out of bounds array index
error. Therefore, the Non-terminating loop check on the for loop is red. A tooltip
appears on the for loop stating the maximum number of iterations including the one
containing the run-time error.

Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so that the Out of
bounds array index error does not occur.

void main() {

 Non-terminating loop

4-79

 int arr[20];

 for(int i=0; i<20; i++) {

 arr[i]=0;

 }

}

Loop contains an error in function call

int arr[4];

void assignValue(int index) {

 arr[index] = 0;

}

void main() {

 for(int i=0;i<=4;i++)

 assignValue(i);

}

In this example, the call to function assignValue in the last for loop iteration contains
an error. Therefore, although an error does not show in the for loop body, a red Non-
terminating loop appears on the loop itself.

Correction — Avoid loop iteration containing error

One possible correction is to reduce the number of loop iterations so the error in the call
to assignValue does not occur.

int arr[4];

void assignValue(int index) {

 arr[index] = 0;

}

void main() {

 for(int i=0;i<4;i++)

 assignValue(i);

}

Loop contains an overflow error

#define MAX 1024

void main() {

4 Check Reference

4-80

 int i=0,val=1;

 while(i<MAX) {

 val*=2;

 i++;

 }

}

In this example, an Overflow error occurs in iteration number 31. Therefore, the Non-
terminating loop check on the while loop is red. A tooltip appears on the while loop
stating the maximum number of iterations including the one containing the run-time
error.

Correction — Reduce loop iterations

One possible correction is to reduce the number of loop iterations so that the overflow
does not occur.

#define MAX 30

void main() {

 int i=0,val=1;

 while(i<MAX) {

 val*=2;

 i++;

 }

}

Check Information
Group: Control flow
Language: C | C++
Acronym: NTL

 Object oriented programming

4-81

Object oriented programming

Dynamic type of this pointer is incorrect

Description

This check on dereference of a this pointer or pointer to method determines whether the
dereference is valid.

Examples

Pointer to method has incorrect type

#include <iostream>

class myClass {

 public:

 void method() {}

};

void main() {

 myClass Obj;

 int (myClass::*methodPtr) (void) = (int (myClass::*) (void))

&myClass::method;

 int res = (Obj.*methodPtr)();

 std::cout << "Result = " << res;

}

In this example, the pointer methodPtr has return type int but points to
myClass:method that has return type void. Therefore, when methodPtr is
dereferenced, the Object oriented programming check produces a red error.

Pointer to method contains NULL when dereferenced

#include <iostream>

class myClass {

 public:

 void method() {}

4 Check Reference

4-82

};

void main() {

 myClass Obj;

 void (myClass::*methodPtr) (void) = &myClass::method;

 methodPtr = 0;

 (Obj.*methodPtr)();

}

In this example, methodPtr has value NULL when it is dereferenced.

Pure virtual function is called in base class constructor

class Shape {

 public:

 Shape(Shape *myShape) {

 myShape-> setShapeDimensions(0.0);

 }

 virtual void setShapeDimensions(double) = 0;

};

class Square: public Shape {

 double side;

 public:

 Square():Shape(this) {

 }

 void setShapeDimensions(double);

};

void Square::setShapeDimensions(double val) {

 side=val;

}

void main() {

 Square sq;

 sq.setShapeDimensions(1.0);

}

In this example, the derived class constructor Square::Square calls the base class
constructor Shape::Shape() with its this pointer. The base class constructor then
calls the pure virtual function Shape::setShapeDimensions through the this
pointer. Since the call to a pure virtual function from a constructor is undefined, the
Object oriented programming check produces a red error.

 Object oriented programming

4-83

Check Information
Group: C++
Language: C++
Acronym: OOP

4 Check Reference

4-84

Out of bounds array index
Array is accessed outside range

Description

This check on an array element access determines whether the element is outside the
array range.

Diagnosing This Check

“Review and Fix Out of Bounds Array Index Checks”

Examples

Array index is equal to array size

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i]);

 }

In this example, the array fib is assigned a size of 10. An array index for fib has
allowed values of [0,1,2,...,9]. The variable i has a value 10 when it comes out of the for-

 Out of bounds array index

4-85

loop. Therefore, when the printf statement attempts to access fib[10] through i, the
Out of bounds array index check produces a red error.

The check also produces a red error if printf uses *(fib+i) instead of fib[i].

Correction — Keep array index less than array size

One possible correction is to print fib[i-1] instead of fib[i] after the for-loop.

#include <stdio.h>

void fibonacci(void)

{

 int i;

 int fib[10];

 for (i = 0; i < 10; i++)

 {

 if (i < 2)

 fib[i] = 1;

 else

 fib[i] = fib[i-1] + fib[i-2];

 }

 printf("The 10-th Fibonacci number is %i .\n", fib[i-1]);

 }

Check Information
Group: Static memory
Language: C | C++
Acronym: OBAI

See Also

Polyspace Results
Illegally dereferenced pointer

4 Check Reference

4-86

Overflow

Arithmetic operation causes overflow

Description

This check on an arithmetic operation determines whether the result overflows. An
overflow occurs when the value of a variable falls outside the range allowed by its type.

Diagnosing This Check

“Review and Fix Overflow Checks”

Examples

Integer overflow

void main() {

 int i=1;

 i = i << 30; //i = 2^30

 i = 2*i-2;

}

In this example, the operation 2*i results in a value 231. Since the maximum value
that the type int can hold on a 32–bit target is 231-1, the Overflow check on the
multiplication produces a red error.

Overflow due to left shift on signed integers

void main(void)

 {

 unsigned int i;

 i = 1090654225 << 1;

 Overflow

4-87

 }

In this example, an Overflow error occurs because of integer promotion.

Float overflow

#include <float.h>

void main() {

 float val = FLT_MAX;

 val = val * 2 + 1.0;

}

In this example, FLT_MAX is the maximum value that can be represented by float on a
32-bit target. Therefore, the operation val * 2 results in an Overflow error.

Negative overflow

#define FLT_MAX 3.40282347e+38F

#define FLT_MIN 1.17549435e-38

int input();

void main() {

int choice=input();

if(choice==0)

 float_negative_overflow();

else

 int_negative_overflow();

}

void float_negative_overflow() {

 float zer_float = FLT_MIN;

 float min_float = -FLT_MAX;

 zer_float = zer_float * zer_float;

 min_float = -min_float * min_float;

}

void int_negative_overflow() {

 int min_int = -2147483648;

}

4 Check Reference

4-88

In this example:

• In float_negative_overflow, there are two cases of underflow:

• In the first case, zer_float contains the closest possible number to zero that
can be represented by the type float. Because the operation zer_float *
zer_float produces a number that is even closer to zero, it cannot be represented
by the type float. However, the Overflow check does not detect this kind of
underflow.

• In the second case, min_float contains the most negative number that can
be represented by the type float. Because the operation -min_float *
min_float produces a number that is further negative, it cannot be represented
by the type float. Therefore, the Overflow check produces a red error.

• In int_negative_overflow, the variable min_int is assigned the value
-2147483648. This assignment occurs in three steps:

1 The value 2147483648 is assigned to an unsigned 32–bit integer.
2 The unsigned integer is cast to a signed integer.
3 The unary minus is performed on the signed integer.

Since the maximum value that a signed integer can have is 2147483647, a overflow
occurs in the second step. Therefore, even though the minimum value a signed
integer can have is -2147483648, a red Overflow error appears on the operation int
min_int = -2147483648; .

Overflows on constants

void main() {

 char x = 0xFFFF;

 x=x+1;

}

In this example, the constant 0xFFFF is greater than the maximum value that can be
represented by the type char. Therefore the Overflow check produces a red error.

The following table lists three kinds of constants with the corresponding data types. For
each kind, the data type assigned to a constant is the first data type in the corresponding
column that can hold the constant.

Decimal int, long, unsigned long

 Overflow

4-89

Hexadecimal int, unsigned int, long, unsigned
long

Float float, double

For example, (assuming a 16-bit target) the data types for the following values are listed
in this table.

5.8 double

6 int

65536 long

0x6 int

0xFFFF unsigned int

5.8F float

65536U unsigned int

To avoid red Overflow errors on constants, on the Configuration pane, use the
analysis option Check Behavior > Ignore overflowing computations on constants.

Overflows on unsigned bit fields

#include <stdio.h>

struct

{

 unsigned int dayOfWeek : 2;

} Week;

void main()

{

 Week.dayOfWeek = 2;

 Week.dayOfWeek = 3;

 Week.dayOfWeek = 4;

}

In this example, dayOfWeek occupies 2 bits. Because it is an unsigned integer, it can
take values in [0,3]. When you assign 4 to dayOfWeek, the Overflow check is red.

To detect overflows on signed and unsigned integers, on the Configuration pane, under
Check Behavior, select signed-and-unsigned for Detect overflows.

4 Check Reference

4-90

Overflows on signed and enum bit fields

enum tBit {

 ZERO = 0x00,

 ONE = 0x01 ,

 TWO = 0x02

};

struct twoBit

{

 enum tBit myBit:2;

} myBitField;

void main()

{

 myBitField.myBit = ZERO;

 myBitField.myBit = ONE;

 myBitField.myBit = TWO;

}

In this example, because myBit is an enum variable, it is implemented through a signed
integer according to the ANSI C90 standard. myBit occupies 2 bits. Because it is a signed
integer, it can take values in [-2,1]. When you assign 2 to myBit, the Overflow check
is red.

To detect overflows on signed integers alone, on the Configuration pane, under Check
Behavior, select signed for Detect overflows.

Check Information
Group: Numerical
Language: C | C++
Acronym: OVFL

See Also

Polyspace Analysis Options
“Detect overflows (C/C++)” on page 1-97 | “Ignore overflowing computations on constants
(C/C++)” on page 1-95 | “Overflow computation mode (C/C++)” on page 1-101

 Shift operations

4-91

Shift operations
Shift operations are invalid

Description

This check on shift operations on a variable var determines:

• Whether the shift amount is larger than the range allowed by the type of var.
• If the shift is a left shift, whether var is negative.

Diagnosing This Check

“Review and Fix Shift Operations Checks”

Examples

Shift amount outside bounds

#include <stdlib.h>

#define shiftAmount 32

enum shiftType {

 SIGNED_LEFT,

 SIGNED_RIGHT,

 UNSIGNED_LEFT,

 UNSIGNED_RIGHT

};

enum shiftType getShiftType();

void main() {

 enum shiftType myShiftType = getShiftType();

 int signedInteger = 1;

 unsigned int unsignedInteger = 1;

 switch(myShiftType) {

 case SIGNED_LEFT: signedInteger = signedInteger << shiftAmount;

 break;

4 Check Reference

4-92

 case SIGNED_RIGHT: signedInteger = signedInteger >> shiftAmount;

 break;

 case UNSIGNED_LEFT: unsignedInteger = unsignedInteger << shiftAmount;

 break;

 case UNSIGNED_RIGHT: unsignedInteger = unsignedInteger >> shiftAmount;

 break;

 }

}

In this example, the shift amount shiftAmount is outside the allowed range for both
signed and unsigned int. Therefore the Shift operations check produces a red error.

Correction — Keep shift amount within bounds

One possible correction is to keep the shift amount in the range 0..31 for unsigned
integers and 0...30 for signed integers. This correction works if the size of int is 32 on
the target processor.

#include <stdlib.h>

#define shiftAmountSigned 30

#define shiftAmount 31

enum shiftType {

 SIGNED_LEFT,

 SIGNED_RIGHT,

 UNSIGNED_LEFT,

 UNSIGNED_RIGHT

};

enum shiftType getShiftType();

void main() {

 enum shiftType myShiftType = getShiftType();

 int signedInteger = 1;

 unsigned int unsignedInteger = 1;

 switch(myShiftType) {

 case SIGNED_LEFT: signedInteger =

signedInteger << shiftAmountSigned;

 break;

 case SIGNED_RIGHT: signedInteger =

signedInteger >> shiftAmountSigned;

 break;

 case UNSIGNED_LEFT: unsignedInteger =

unsignedInteger << shiftAmount;

 break;

 Shift operations

4-93

 case UNSIGNED_RIGHT: unsignedInteger =

 unsignedInteger >> shiftAmount;

 break;

 }

}

Left operand of left shift is negative

void main(void) {

 int x = -200;

 int y;

 y = x << 1;

}

In this example, the left operand of the left shift operation is negative.

Correction — Use Polyspace analysis option

You can use left shifts on negative numbers and not produce a red Shift operations
error. To allow such left shifts, on the Configuration pane, under Check Behavior,
select Allow negative operand for left shifts.

void main(void) {

 int x = -200;

 int y;

 y = x << 1;

}

Left operand of left shift may be negative

short getVal();

int foo(void) {

 long lvar;

 short svar1, svar2;

 lvar = 0;

 svar1 = getVal();

 svar2 = getVal();

 lvar = (svar1 - svar2) << 10;

 if (svar1 < svar1) {

 return 1;

4 Check Reference

4-94

 } else {

 return 0;

 }

}

In this example, if svar1 < svar2, the left operand of << can be negative. Therefore
the Shift operations check on << is orange. Following an orange check, execution paths
containing the error get truncated. Therefore, following the orange Shift operations
check, Polyspace assumes that svar1 >= svar2. The branch of the statement,
if(svar1 < svar2), is unreachable.

Check Information
Group: Numerical
Language: C | C++
Acronym: SHF

See Also

Polyspace Analysis Options
“Allow negative operand for left shifts (C/C++)” on page 1-96

 Unreachable code

4-95

Unreachable code
Code cannot be reached during execution

Description

This check determines whether a section of code can be reached during execution.

Examples of unreachable code include the following:

• If a test condition always evaluates to false, the corresponding code branch cannot be
reached. On the Source pane, the opening brace of the branch is gray.

• If a test condition always evaluates to true, the condition is redundant. On the
Source pane, the condition keyword such as if appears gray.

• The code follows a break or return statement.

If an opening brace of a code block appears gray on the Source pane, to highlight the
entire block, double-click the brace.

The check operates on code inside a function. The checks Function not called and
Function not reachable determine if the function itself is not called or called from
unreachable code.

Diagnosing This Check

“Review and Fix Unreachable Code Checks”

Examples

Test in if Statement Always False

#define True 1

#define False 0

 typedef enum {

 Intermediate, End, Wait, Init

 } enumState;

4 Check Reference

4-96

 enumState input();

 enumState inputRef();

 void operation(enumState, int);

 int checkInit (enumState stateval) {

 if (stateval == Init) return True;

 return False;

 }

 int checkWait (enumState stateval) {

 if (stateval == Wait) return True;

 return False;

 }

 void main() {

 enumState myState = input(),refState = inputRef() ;

 if(checkInit(myState)){

 if(checkWait(myState)) {

 operation(myState,checkInit(refState));

 } else {

 operation(myState,checkWait(refState));

 }

 }

 }

In this example, the main enters the branch of if(checkInit(myState)) only if
myState = Init. Therefore, inside that branch, Polyspace considers that myState
has value Init. checkWait(myState) always returns False and the first branch of
if(checkWait(myState)) is unreachable.

Correction — Remove Redundant Test

One possible correction is to remove the redundant test if(checkWait(myState)).

#define True 1

#define False 0

 typedef enum {

 Intermediate, End, Wait, Init

 } enumState;

 enumState input();

 enumState inputRef();

 Unreachable code

4-97

 void operation(enumState, int);

 int checkInit (enumState stateval) {

 if (stateval == Init) return True;

 return False;

 }

 int checkWait (enumState stateval) {

 if (stateval == Wait) return True;

 return False;

 }

 void main() {

 enumState myState = input(),refState = inputRef() ;

 if(checkInit(myState))

 operation(myState,checkWait(refState));

 }

Test in if Statement Always True

#include <stdlib.h>

#include <time.h>

int roll() {

 return(rand()%6+1);

 }

void operation(int);

void main() {

 srand(time(NULL));

 int die = roll();

 if(die >= 1 && die <= 6)

 /*Unreachable code*/

 operation(die);

 }

In this example, roll() returns a value between 1 and 6. Therefore the if test in main
always evaluates to true and is redundant. If there is a corresponding else branch,
the gray error appears on the else statement. Without an else branch, the gray error
appears on the if keyword to indicate the redundant condition.

Correction — Remove Redundant Test

One possible correction is to remove the condition if(die >= 1 && die <=6).

4 Check Reference

4-98

#include <stdlib.h>

#include <time.h>

int roll() {

 return(rand()%6+1);

 }

void operation(int);

void main() {

 srand(time(NULL));

 int die = roll();

 operation(die);

 }

Test in if Statement Unreachable

#include <stdlib.h>

#include <time.h>

#define True 1

#define False 0

int roll1() {

 return(rand()%6+1);

 }

int roll2();

void operation(int,int);

void main() {

 srand(time(NULL));

 int die1 = roll1(),die2=roll2();

 if((die1>=1 && die1<=6) || (die2>=1 && die2 <=6))

 /*Unreachable code*/

 operation(die1,die2);

}

In this example, roll1() returns a value between 1 and 6. Therefore, the first part of
the if test, if((die1>=1) && (die1<=6)) is always true. Because the two parts of
the if test are combined with ||, the if test is always true irrespective of the second
part. Therefore, the second part of the if test is unreachable.

Correction — Combine Tests with &&

One possible correction is to combine the two parts of the if test with && instead of ||.

 Unreachable code

4-99

#include <stdlib.h>

#include <time.h>

#define True 1

#define False 0

int roll1() {

 return(rand()%6+1);

 }

int roll2();

void operation(int,int);

void main() {

 srand(time(NULL));

 int die1 = roll1(),die2=roll2();

 if((die1>=1 && die1<=6) && (die2>=1 && die2 <=6))

 operation(die1,die2);

}

Check Information
Group: Data flow
Language: C | C++
Acronym: UNR

See Also

Polyspace Results
Function not called | Function not reachable

4 Check Reference

4-100

User assertion
assert statement fails

Description

This check determines whether the argument to an assert macro is true.

The argument to the assert macro must be true when the macro executes. Otherwise
the program aborts and prints an error message. Polyspace models this behavior by
treating a failed assert statement as a run-time error. This check allows you to detect
failed assert statements before program execution.

Diagnosing This Check

“Review and Fix User Assertion Checks”

Examples

Red assert on array index

#include<stdio.h>

#define size 20

int getArrayElement();

void initialize(int* array) {

 for(int i=0;i<size;i++)

 array[i] = getArrayElement();

}

void printElement(int* array,int index) {

 assert(index < size);

 printf("%d", array[index]);

}

int getIndex() {

 User assertion

4-101

 int i = size;

 return i;

}

void main() {

 int array[size];

 int index;

 initialize(array);

 index = getIndex();

 printElement(array,index);

}

In this example, the assert statement in printElement causes program abort if index
>= size. The assert statement makes sure that the array index is not outside array
bounds. If the code does not contain exceptional situations, the assert statement must
be green. In this example, getIndex returns an index equal to size. Therefore the
assert statement appears red.

Correction — Correct cause of assert failure

When an assert statement is red, investigate the cause of the exceptional situation. In
this example, one possible correction is to force getIndex to return an index equal to
size-1.

#include<stdio.h>

#define size 20

int getArrayElement();

void initialize(int* array) {

 for(int i=0;i<size;i++)

 array[i] = getArrayElement();

}

void printElement(int* array,int index) {

 assert(index < size);

 printf("%d", array[index]);

}

int getIndex() {

 int i = size;

 return (i-1);

4 Check Reference

4-102

}

void main() {

 int array[size];

 int index;

 initialize(array);

 index = getIndex();

 printElement(array,index);

}

Orange assert on malloc return value

#include <stdlib.h>

void initialize(int*);

int getNumberOfElements();

void main() {

 int numberOfElements, *myArray;

 numberOfElements = getNumberOfElements();

 myArray = (int*) malloc(numberOfElements);

 assert(myArray!=NULL);

 initialize(myArray);

}

In this example, malloc can return NULL to myArray. Therefore, myArray can have two
possible values:

• myArray == NULL: The assert condition is false.
• myArray != NULL: The assert condition is true.

Combining these two cases, the User assertion check on the assert statement is
orange. After the orange assert, Polyspace considers that myArray is not equal to NULL.

Correction — Check return value for NULL

One possible correction is to write a customized function myMalloc where you always
check the return value of malloc for NULL.

 User assertion

4-103

#include <stdio.h>

#include <stdlib.h>

void initialize(int*);

int getNumberOfElements();

void myMalloc(int **ptr, int num) {

 ptr = (int) malloc(num);

 if(*ptr==NULL) {

 printf("Memory allocation error");

 exit(1);

 }

}

void main() {

 int numberOfElements, *myArray=NULL;

 numberOfElements = getNumberOfElements();

 myMalloc(&myArray,numberOfElements);

 assert(myArray!=NULL);

 initialize(myArray);

}

Imposing constraint through orange assert

#include<stdio.h>

#include<math.h>

double getNumber();

void squareRootOfDifference(double firstNumber, double secondNumber) {

 assert(firstNumber >= secondNumber);

 if(firstNumber > 0 && secondNumber > 0)

 printf("Square root = %.2f",sqrt(firstNumber - secondNumber));

}

void main() {

 double firstNumber = getNumber(), secondNumber = getNumber();

 squareRootOfDifference(firstNumber,secondNumber);

}

In this example, the assert statement in squareRootOfDifference() causes
program abort if firstNumber is less than secondNumber. Because Polyspace does

4 Check Reference

4-104

not have enough information about firstNumber and secondNumber, the assert is
orange.

Following the assert, all execution paths that cause assertion failure terminate.
Therefore, following the assert, Polyspace considers that firstNumber >=
secondNumber. The Invalid use of standard library routine check on sqrt is green.

Use assert statements to help Polyspace determine:

• Relationships between variables
• Constraints on variable ranges

Check Information
Group: Other
Language: C | C++
Acronym: ASRT

5

Approximations Used During
Verification

• “Why Polyspace Verification Uses Approximations” on page 5-2
• “Polyspace Assumptions About Certain Code Constructs” on page 5-4
• “Limitations of Polyspace Verification” on page 5-27

5 Approximations Used During Verification

5-2

Why Polyspace Verification Uses Approximations

In this section...

“What is Static Verification” on page 5-2
“Exhaustiveness” on page 5-3

What is Static Verification

Polyspace software uses static verification to prove the absence of run-time errors. Static
verification derives the dynamic properties of a program without actually executing it.
This differs significantly from other techniques, such as run-time debugging, in that the
verification it provides is not based on a given test case or set of test cases. The dynamic
properties obtained through the Polyspace verification are true for executions of the
software.

Polyspace verification works by approximating the software under verification, using
representative approximations of software operations and data.

For example, consider the following code:

for (i=0 ; i<1000 ; ++i)

{ tab[i] = foo(i);

}

To check that the variable i never overflows the range of tab, a traditional approach
would be to enumerate each possible value of i. One thousand checks would be required.

Using the static verification approach, the variable i is modelled by its variation domain.
For instance the model of i is that it belongs to the [0..999] static interval. (Depending
on the complexity of the data, convex polyhedrons, integer lattices and more elaborated
models are also used for this purpose).

An approximation, by definition, leads to information loss. For instance, the information
that i is incremented by one every cycle in the loop is lost. However, the important fact
is that this information is not required to ensure that range errors will not occur; it is
only necessary to prove that the variation domain of i is smaller than the range of tab.
Only one check is required to establish that – and hence the gain in efficiency compared
to traditional approaches.

 Why Polyspace Verification Uses Approximations

5-3

Static code verification does have an exact solution, but that solution is generally not
practical, as it would generally require the enumeration of all possible test cases. As a
result, approximation is required.

Exhaustiveness

Nothing is lost in terms of exhaustiveness. The reason is that Polyspace verification
works by performing upper approximations. In other words, the computed variation
domain of a program variable is a superset of its actual variation domain. As a result,
Polyspace verifies run-time error items that require checking.

5 Approximations Used During Verification

5-4

Polyspace Assumptions About Certain Code Constructs

In this section...

“Variable Ranges” on page 5-4
“Initialization of Global Variables” on page 5-5
“Volatile Variables” on page 5-7
“Structures with Volatile Fields” on page 5-9
“Absolute Addresses” on page 5-9
“External Variables” on page 5-10
“Definitions and Declarations” on page 5-10
“Types Promotion” on page 5-11
“Using memset and memcpy” on page 5-14
“Shared Variables” on page 5-18
“Standard Library Float Routines” on page 5-19
“Unions” on page 5-19
“Constant Pointer” on page 5-20
“Variable Cast as Void Pointer” on page 5-21
“Assembly Code” on page 5-21

Variable Ranges

For variables whose values cannot be determined from the code, Polyspace assumes full-
range of values allowed by their type.

For instance, for a variable of integer type, the software uses the following criteria to
determine the minimum and maximum value allowed:

• The C standard specifies that the range of a signed n-bit integer-type variable must
be at least [-2n-1-1, 2n-1-1].

The Target processor type that you specify determines the number of bits allocated
for a certain type. For more information, see “Target processor type (C/C++)” on page
1-6.

 Polyspace Assumptions About Certain Code Constructs

5-5

• In addition to the C standard, Polyspace assumes that your target uses the two’s
complement representation for signed integers. Therefore, the software uses this
representation to determine the exact range of a variable. In this representation, the
range of a signed n-bit integer-type variable is [-2n-1, 2n-1-1].

For example, for an i386 processor:

• A char variable has 8 bits. Therefore, the C standard specifies that the range of the
char variable must be at least [-127,127].

• Using the two’s complement representation, Polyspace assumes that the exact range
of the char variable is [-128,127].

To determine the range that Polyspace assumes for a certain type, do the following:

1 Run verification on the following code. Replace type with the type name such as
int.

type getVal(void);

void main() {

 type val = getVal();

}

2 Open your verification results. On the Source pane, place your cursor on val.

The tooltip provides the range that Polyspace assumes for type. Since getVal is not
defined, Polyspace assumes that the return value and therefore val is full-range.

Initialization of Global Variables

Unless you use the option “Ignore default initialization of global variables (C/C++)” on
page 1-35, Polyspace considers global variables to be initialized according to ANSI C
standards. The default values are:

• 0 for int
• 0 for char
• 0.0 for float

If you define global variables in your code, then the software uses the dummy function
_init_globals() to initialize the global variables. The _init_globals() function is
the first function called in the main function.

Consider the following code in the application gv_example.c.

5 Approximations Used During Verification

5-6

extern int func(int); /* External function */

/* Global variables initialized in _init_globals() */

/* before the execution of main() procedure */

int garray[3] = {1, 2, 3};

/* Initialized: written in __init_globals() */

int gvar = 12;

/* Initialized: written in __init_globals() */

int main(void) {

 int i, lvar = 0;

 for (i = 0; i < 3; i++)

 lvar += func(garray[i] + gvar);

 return lvar;

}

After verification, you see the following:

• On the Results Summary pane, if you select Group by > File, under the node
gv_example.c, you see _init_globals.

 Polyspace Assumptions About Certain Code Constructs

5-7

• On the Variable Access pane, gv_example._init_globals represents the first
write operation on a global variable, for example, garray. In the Values column, the
corresponding value represents the value of the global variable after initialization.

Volatile Variables

The values of volatile variables can change without explicit write operations.

For local volatile variables:

• Polyspace assumes that the variable has the full range of values allowed for their
type.

• Unless you explicitly initialize the variable, Polyspace produces an orange Non-
initialized local variable check when the variable is read.

In the following example, Polyspace assumes that val1 is potentially non-initialized
but val2 is initialized. However, because Polyspace assumes both variables to have full
range of values, it considers that the + operation can cause an overflow.

int func (void)

{

 volatile int val1, val2=0;

 return(val1 + val2);

}

For global volatile variables:

• Polyspace assumes that the variable has full range of values allowed for their type.

5 Approximations Used During Verification

5-8

• Even if you do not explicitly initialize the variable, Polyspace produces a green Non-
initialized variable check when the variable is read.

If the root cause of an orange check is a volatile variable, you cannot override the default
assumptions and constrain the values of the volatile variables. Instead try one of the
following:

• If the volatile variable represents hardware-supplied data, see if you can use a
function call to model this data retrieval. For example, replace volatile int
port_A with int port_A = read_location(). You do not have to define the
function. Polyspace stubs the undefined functions. You can then specify constraints on
the function return values. See “Constrain Function Stubbing”.

• See if you can copy the contents of the volatile variable to a global nonvolatile
variable. You can then constrain the global variable values throughout your code. See
“Constrain Global Variable Range”.

• Replace the volatile variable with a stubbed function, but only for verification. Before
verification, specify constraints on the stubbed functions. To do this replacement:

1 Write a Perl script that replaces each volatile variable declaration with a
nonvolatile declaration where you obtain the variable value from a function call.

For example, if your code contains the line volatile s8 PORT_A, your Perl
script can contain this substitution:

$line=~ s/^\s*volatile\s*s8\s*PORT_A;/s8 PORT_A = random_s8();/g;

2 Specify the location of this Perl script for the analysis option Command/script
to apply to preprocessed files. See “Command/script to apply to preprocessed
files (C/C++)” on page 1-27.

3 In an include file, provide the function declaration. For example, for a function
random_s8, the include file can contain the following declaration:

#ifndef POLYSPACE_H

#define POLYSPACE_H

signed char random_s8(void);

#endif

4 Insert a #include directive for your include file in the relevant source files

Instead of a manual insertion, specify the location of your include file for the
analysis option Include. See “Include (C/C++)” on page 1-31.

 Polyspace Assumptions About Certain Code Constructs

5-9

Structures with Volatile Fields

Polyspace treats the fields of a structure as volatile even if only one field is declared with
the volatile keyword.

In the following example, Polyspace produces an orange Non-initialized variable error
when a is read, even though a is not declared with the volatile keyword.

 typedef struct {

 int a;

 volatile int b;

} volStruct;

void func(int);

void main() {

 volStruct myStruct;

 func(myStruct.a);

 func(myStruct.b);

}

Absolute Addresses

Polyspace highlights absolute addresses in your code with an orange Absolute address
check to indicate one of the following issues:

• The address might not be a valid address
• The address might not have sufficient memory available.

In the following example, X is a macro that refers to the content of an absolute address
0x20000. Each time X is used, the software produces an orange Absolute address check
to highlight the use of an absolute address.

#define X (* ((int *)0x20000))

void f1(void) {

 int y;

 X = 100;

 y = 1 / X;

}

In the following example, the software produces an Absolute address check only when
the address is assigned to a pointer p. Following the check, the software considers that

5 Approximations Used During Verification

5-10

the pointer p is initialized and can be dereferenced. Therefore, it produces green Non-
initialized pointer and Illegally dereferenced pointer checks on *p = 100.

void f2(void) {

 int y;

 int *p = (int *)0x20000;

 *p = 100;

 y = 1/ *p;

}

For more information, see Absolute address.

External Variables

Polyspace verification works on the principle that a global or static external variable
could take any value within the range of its type.

extern int x;

void f(void)

int y;

y = 1 / x; // orange because x ~ [-2^31, 2^31-1]

y = 1 / x; // green because x ~ [-2^31 -1] U [1, 2^31-1]

For more information on color propagation, refer to “Verification Following Red and
Orange Checks”.

For external structures containing fields of type “pointer to function”, this principle leads
to red errors in the verification results. In this case, the resulting default behavior is that
these pointers do not point to any valid function. For meaningful results, you need to
define these variables explicitly.

The excessive use of global variables can lead to problems in a design. It is not always
apparent which global variables are produced by a given file, or which global variables
are used by that file. For example, global variables result in:

• File APIs (or functions accessible from outside the file) without procedure parameters.
• The requirement for a formal list of variables which are produced and used, as well as

the theoretical ranges they can take as input and/or output values.

Definitions and Declarations

The definition and declaration of a variable are two different but related operations.

 Polyspace Assumptions About Certain Code Constructs

5-11

Definition

• If a function is defined, it means that the body of the function has been written: int
f(void) { return 0; }

• If a variable is defined, it means that a part of memory has been reserved for the
variable: int x; or extern int x=0;

When a variable is not defined, the software considers the variable to be initialized,
and to have potentially any value in its full range. For more information, see “External
Variables” on page 5-10.

When a function is not defined, unless you select No automatic stubbing, the software
automatically stubs the function. For more information, see “No automatic stubbing (C/C
++)” on page 1-37.

Declaration

• Function declaration: int f(void);
• Variable declaration: extern int x;

A declaration provides information about the type of the function or variable. If the
function or variable is used in a file where it has not been declared, a compilation error
results.

Types Promotion

• “Unsigned Integers Promoted to Signed Integers” on page 5-11
• “Promotions Rules in Operators” on page 5-12
• “Example” on page 5-13

Unsigned Integers Promoted to Signed Integers

You need to understand the circumstances under which signed integers are promoted to
unsigned.

For example, the execution of the following code would produce an assertion failure and a
core dump.

#include <assert.h>

int f1(void) {

5 Approximations Used During Verification

5-12

 int x = -2;

 unsigned int y = 5;

 assert(x <= y);

}

Implicit promotion explains this behavior. In this example, x <= y is implicitly:

((unsigned int) x) <= y /* implicit promotion since y is unsigned */

A negative cast into unsigned gives a large value. This value can never be <= 5, so the
assertion can never hold true.

In this second example, consider the range of possible values for x:

void f2(void)

volatile int random;

unsigned int y = 7;

int x = random;

assert (x >= -7 && x <= y);

assert (x>=0 && x<=7);

The first assertion is orange; it may cause an assert failure. However, given that the
range of x after the first assertion is not [-7 .. 7], but rather [0 .. 7], the second
assertion would hold true.

Promotions Rules in Operators

Familiarity with the rules applying to the standard operators of the C language helps
you to analyze those orange and red checks which relate to overflows on type operations.
Those rules are:

• Unary operators operate on the type of the operand.
• Shifts operate on the type of the left operand.
• Boolean operators operate on Booleans.
• Other binary operators operate on a common type. If the types of the two operands

are different, they are promoted to the first common type which can represent both of
them.

• Be careful of constant types.
• Be careful when verifying a operation between variables of different types without an

explicit cast.

 Polyspace Assumptions About Certain Code Constructs

5-13

Example

Consider the integer promotion aspect of the ANSI C standard (see 6.2.1 in ISO/IEC
9899:1990). On arithmetic operators like +, -, *, % and / , an integer promotion is applied
on both operands. For verification, that can imply an OVFL or a UNFL orange check.

2 extern char random_char(void);

3 extern int random_int(void);

4

5 void main(void)

6 {

7 char c1 = random_char();

8 char c2 = random_char();

9 int i1 = random_int();

10 int i2 = random_int();

11

12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator

13 c1 = c1 + c2; // An OVFL/UNFL warning on the c1

14 // assignment [from int32 to int8]

15 }

Unlike the addition of two integers at line 12, an implicit promotion is used in the
addition of the two chars at line 13. Consider this second “equivalence” example.

2 extern char random_char(void);

3

4 void main(void)

5 {

6 char c1 = random_char();

7 char c2 = random_char();

8

9 c1 = (char)((int)c1 + (int)c2); // Warning OVFL: due to

10 // integer promotion

11 }

An orange check represents a warning of a potential overflow (OVFL), generated on
the (char) cast [from int32 to int8]. A green check represents a verification that the +
operator does not produce an overflow (OVFL).

Integer promotion requires that the abstract machine must promote the type of each
variable to the integral target size before realizing the arithmetic operation and
subsequently adjusting the assignment type. See the preceding equivalence example of a
simple addition of two char.

Integer promotion respects the size hierarchy of basic types:

5 Approximations Used During Verification

5-14

• char (signed or not) and signed short are promoted to int.
• unsigned short is promoted to int only if int can represent all possible values of an

unsigned short. If that is not the case (because of a 16-bit target, for example) then
unsigned short is promoted to unsigned int.

• Other types such as(un)signed int, (un)signed long int, and (un)signed long long int
promote themselves.

Using memset and memcpy

• “Polyspace Specifications for memcpy” on page 5-14
• “Polyspace Specifications for memset” on page 5-16

Polyspace Specifications for memcpy

Syntax:

#include <string.h>

void * memcpy (void * destinationPtr, const void * sourcePtr, size_t num);

If your code uses the memcpy function, see the information in this table.

Specification Example

Polyspace runs a Invalid use of standard
library routine check on the function. The
check determines if the memory block that
sourcePtr or destinationPtr points
to is greater than or equal in size to the
memory assigned to them through num.

In the following code, Polyspace produces
a red Invalid use of standard library
routine error because:

• d is an int variable.
• sizeof(S) is greater than

sizeof(int).
• A memory block of size sizeof(S) is

assigned to &d.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

 Polyspace Assumptions About Certain Code Constructs

5-15

Specification Example
void main() {

 S s;

 int d;

 memcpy(&d, &s, sizeof(S));

}

Polyspace does not check if the memory
that sourcePtr points to is itself
initialized.

In the following code, Polyspace does not
produce a red Non-initialized local
variable error when the memcpy function
copies s to d.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

void main() {

 S s, d;

 memcpy(&d, &s, sizeof(S));

 func(d.b);

}

5 Approximations Used During Verification

5-16

Specification Example

Following the use of memcpy, Polyspace
considers that the variables that
destinationPtr points to can have any
value allowed by their type.

In the following code, Polyspace considers
that the fields of d can have any value
allowed by their type. For instance, d.b
can have any value in the range allowed for
an int variable.

#include <string.h>

typedef struct {

 char a;

 int b;

 } S;

void func(int);

void main() {

 S s, d={'a',1};

 int val;

 val = d.b; // val=1

 memcpy(&d, &s, sizeof(S));

 val = d.b;

 // val can have any int value

}

Polyspace Specifications for memset

Syntax:

#include <string.h>

void * memset (void * ptr, int value, size_t num);

If your code uses the memset function, see the information in this table.

Specification Example

Polyspace runs a Invalid use of standard
library routine check on the function.
The check determines if the memory block
that ptr points to is greater than or equal
in size to the memory assigned to them
through num.

In the following code, Polyspace produces
a red Invalid use of standard library
routine error because:

• val is an int variable.
• sizeof(S) is greater than

sizeof(int).

 Polyspace Assumptions About Certain Code Constructs

5-17

Specification Example

• A memory block of size sizeof(S) is
assigned to &val.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 int val;

 memset(&val,0,sizeof(S));

}

If value is 0, following the use of memset,
Polyspace considers that the variables that
ptr points to have the value 0.

In the following code, Polyspace considers
that following the use of memset, each field
of s has value 0.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 S s;

 int val;

 memset(&s,0,sizeof(S));

 val=s.b; //val=0

}

5 Approximations Used During Verification

5-18

Specification Example

If value is anything other than 0,
following the use of memset, Polyspace
considers that:

• The variables that ptr points to can be
non-initialized.

• If initialized, the variables can have any
value allowed by their type.

In the following code, Polyspace considers
that following the use of memset, each field
of s has any value allowed by its type. For
instance, s.b can have any value in the
range allowed for an int variable.

#include <string.h>

typedef struct {

 char a;

 int b;

} S;

void main() {

 S s;

 int val;

 memset(&s,1,sizeof(S));

 val=s.b;

 // val can have any int value

}

Shared Variables

At a minimum, the range of a shared variable is the union of all ranges of the variable in
the application. At a maximum, the variable is full range.

12 void p_task1(void)

13 {

14 begin_cs();

15 X = 0;

16 if (X) {

17 Y = X; // Verified NIV, although it should be gray

18 assert (Y == 12); // Warning assert, although it should be gray

19 }

20 end_cs();

21 }

22

23 void p_task2(void)

24 {

25 begin_cs();

26 X = 12;

27 Y = X + 1; // Polyspace considers [Y==1] or [Y==13]

 Polyspace Assumptions About Certain Code Constructs

5-19

28 if (Y == 13)

29 Y = 14;

30 else

31 Y = X - 1 ; // this line should be gray

32 end_cs();

33 }

Standard Library Float Routines

For some two-argument standard library float routines, the verification can ignore the
function arguments and assume that the function returns all possible values in its range.

For instance, in the following code, the first assert statement is true while the second
assert statement is false. However, because the verification assumes that fmodf and
nextafterf return full-range values, it considers that the assert statements are
false but only on a fraction of possible execution paths. Therefore, the User assertion
checks on the assert statements are orange.

#include <math.h>

int main() {

 float val1=10.0, val2=3.0,res;

 res = fmodf(val1/val2);

 assert(res==1.0);

 res = nextafterf(val2,val1);

 assert(res<3.0);

}

Unions

In some situations, unions can help you construct efficient code. However, if you write
a union member and read back a different union member, the behavior depends on
the member sizes and can be implementation-dependent. You have to determine the
following for your implementation:

• Padding – Padding might be inserted at the end of an union.
• Alignment – Members of structures within a union might have different alignments.
• Endianness – Whether the most significant byte of a word could be stored at the

lowest or highest memory address.
• Bit-order – Bits within bytes could have both different numbering and allocation to

bit fields.

5 Approximations Used During Verification

5-20

Because of these issues, Polyspace verification can lose precision when unions are used in
your code.

For example, if you write a union member, but read back another union member,
Polyspace considers that the latter member can have any value allowed by its type. In
the following code, the member b of X is written, but a is read. Polyspace considers that a
can have any int value and both branches of the if-else statement are reachable.

typedef union _u {

 int a;

 char b[4];

} my_union;

void main() {

 my_union X;

 X.b[0] = 1;

 X.b[1] = 1;

 X.b[2] = 1;

 X.b[1] = 1;

 if (X.a == 0x1111) {

 }

 else {

 }

}

To avoid using unions in your code, check for violations of MISRA C:2012 Rule 19.2.

Note: If you initialize an union using a static initializer, following ANSI C standard,
Polyspace considers that the union member appearing first in the declaration list gets
initialized.

Constant Pointer

To increase Polyspace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

 Polyspace Assumptions About Certain Code Constructs

5-21

Variable Cast as Void Pointer

The C language allows the use of statements that cast a variable as a void pointer.
However, Polyspace verification of these statements entails a loss of precision.

Consider the following code:
1 typedef struct {

2 int x1;

3 } s1;

4

5 s1 object;

6

7 void g(void *t) {

8 int x;

9 s1 *p;

10

11 p = (s1 *)t;

12 x = p->x1; // x should be assigned value 5 but p->x1 is full-range

13 }

14

15 void main(void) {

16 s1 * p;

17

18 object.x1 = 5;

19 p = &object;

20 g((void *)p); // p cast as void pointer

21 }

On line 12, the variable x should be assigned the value 5. However, the software treats
p->x1 as full-range.

In some cases, you can avoid this loss of precision by running your verification with the
option -retype-pointer. For this example, if you specify -retype-pointer, the
software assigns the value 5 to x in the function g.

Assembly Code

• “Ignored Inline Assemblers” on page 5-21
• “Single Function Containing Assembly Code” on page 5-24
• “Multiple Functions Containing Assembly Code” on page 5-25
• “Local Variables in Functions with Assembly Code” on page 5-26

Ignored Inline Assemblers

Polyspace recognizes the following inline assemblers as introduction of assembly code.
During verification, it ignores the assembly code introduced by these assemblers.

5 Approximations Used During Verification

5-22

• asm

Examples:

• int f(void)

{

 asm ("% reg val; mtmsr val;");

 asm("\tmove.w #$2700,sr");

 asm("\ttrap #7");

 asm(" stw r11,0(r3) ");

 assert (1); // is green

 return 1;

}

• int other_ignored2(void)

{

 asm "% reg val; mtmsr val;";

 asm mtmsr val;

 assert (1); // is green

 asm ("px = pm(0,%2); \

 %0 = px1; \

 %1 = px2;"

 : "=d" (data_16), "=d" (data_32)

 : "y" ((UI_32 pm *)ram_address):

"px");

 assert (1); // is green

}

• int other_ignored4(void)

{

 asm {

 port_in: /* byte = port_in(port); */

 mov EAX, 0

 mov EDX, 4[ESP]

 in AL, DX

 ret

 port_out: /* port_out(byte,port); */

 mov EDX, 8[ESP]

 mov EAX, 4[ESP]

 out DX, AL

 ret }

assert (1); // is green

}

• __asm__

 Polyspace Assumptions About Certain Code Constructs

5-23

Examples:

• int other_ignored6(void)

{

#define A_MACRO(bus_controller_mode) \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop"); \

 __asm__ volatile("nop")

 assert (1); // is green

 A_MACRO(x);

 assert (1); // is green

 return 1;

}

• int other_ignored1(void)

{

 __asm

 {MOV R8,R8

 MOV R8,R8

 MOV R8,R8

 MOV R8,R8

 MOV R8,R8}

 assert (1); // is green

}

• int GNUC_include (void)

{

 extern int __P (char *__pattern, int __flags,

 int (*__errfunc) (char *, int),

 unsigned *__pglob) __asm__ ("glob64");

 __asm__ ("rorw $8, %w0" \

 : "=r" (__v) \

 : "0" ((guint16) (val)));

 __asm__ ("st g14,%0" : "=m" (*(AP)));

 __asm("" \

 : "=r" (__t.c) \

 : "0" ((((union { int i, j; } *) (AP))++)->i));

 assert (1); // is green

 return (int) 3 __asm__("% reg val");

}

• int other_ignored3(void)

5 Approximations Used During Verification

5-24

{

 __asm {ldab 0xffff,0;trapdis;};

__asm {ldab 0xffff,1;trapdis;};

 assert (1); // is green

 __asm__ ("% reg val");

 __asm__ ("mtmsr val");

 assert (1); // is green

 return 2;

}

• #pragma asm #pragma endasm

Examples:

• int pragma_ignored(void)

{

 #pragma asm

 SRST

 #pragma endasm

 assert (1); // is green

}

• void test(void)

{

 #asm

 mov _as:pe, reg

 jre _nop

 #endasm

 int r;

 r=0;

 r++;

}

Single Function Containing Assembly Code

The software automatically stubs a function that is preceded by asm, even if a body is
defined.
asm int h(int tt) // function h is stubbed even if body is defined

{

 % reg val; // ignored

 mtmsr val; // ignored

 return 3; // ignored

};

void f(void) {

 int x;

 x = h(3); // x is full-range

 Polyspace Assumptions About Certain Code Constructs

5-25

}

Multiple Functions Containing Assembly Code

The functions that you specify through the following pragma are stubbed automatically,
even if function bodies are defined:
#pragma inline_asm(list of functions)

The following code provides examples:

#pragma inline_asm(ex1, ex2)

 // The functions ex1 and ex2 are

 // stubbed, even if their bodies are defined

int ex1(void)

{

 % reg val;

 mtmsr val;

 return 3; // ignored

};

int ex2(void)

{

 % reg val;

 mtmsr val;

 assert (1); // ignored

 return 3;

};

#pragma inline_asm(ex3) // the definition of ex3 is ignored

int ex3(void)

{

 % reg val;

 mtmsr val; // ignored

 return 3;

};

void f(void) {

 int x;

 x = ex1(); // ex1 is stubbed : x is full-range

 x = ex2(); // ex2 is stubbed : x is full-range

5 Approximations Used During Verification

5-26

 x = ex3(); // ex3 is stubbed : x is full-range

}

Local Variables in Functions with Assembly Code

In functions containing assembly code, the software treats local variables that are not
explicitly initialized as potentially initialized variables.

Consider the following function.
1 inline int f(void) {

2 int r;

3 asm("mov 4%0,%%eax"::"m"(r));

4 return r; // orange NIVL because r is not initialized

5 }

The software treats r as a potentially initialized variable. Verification generates an
orange NIVL check for r.

Consider another function.
1 int dummy(void) {

2 int g,h;

3 h = g * 2; // orange NIVL for g (red NIVL before 12a)

4 h = 2; // h is assigned the value 2

5 asm("int $0x3");

6 asm("mov 4%0,%%eax"::"m"(g));

7 asm("movss 4%0,%%xmm1"::"m");

8 return h; // value returned is 2

9 }

In line 3, the variable g is not initialized. Verification:

• Generates an orange NIVL check for g.
• Assigns a full-range value to g.

 Limitations of Polyspace Verification

5-27

Limitations of Polyspace Verification

Code verification has certain limitations. The Polyspace Code Prover Limitations
document describes known limitations of the code verification process.

This document is stored as codeprover_limitations.pdf in the following folder:

MATLAB_Install\polyspace\verifier\code_prover

6

Examples

6 Examples

6-2

Scripts for Command-Line Verification

The following sections contain sample scripts that you can use to run a Polyspace
verification from the DOS or UNIX command line. For information on the general
workflow, see:

• “Run Local Verification at Command Line”
• “Run Remote Analysis at Command Line”

In this section...

“Simple C Example” on page 6-2
“Apache Example” on page 6-2
“cxref Example” on page 6-3
“T31 Example” on page 6-3
“Dishwasher1 Example” on page 6-3
“Satellite Example” on page 6-4

Simple C Example

polyspace-code-prover-nodesktop \

 -prog myCproject \

 -O1 \

 -I /home/user/includes \

 -D SUN4 -D USE_FILES \

Apache Example

Here is a script for verifying the code for Apache (after formatting). The source code is in
C and the compilation is for an Oracle® Sun™ Microsystems SPARC® processor.

Note: The use of O0 to reduce verification time.

polyspace-code-prover-nodesktop \ \

 -target sparc \

 -prog Apache \

 Scripts for Command-Line Verification

6-3

 -keep-all-files \

 -O0 \

 -D PST \

 -D __GNUC_MINOR__=6 -D SOLARIS2=270 -D USE_EXPAT \

 -D NO_DL_NEEDED \

 -I sources \

 -I /usr/local/pst/include.sparc \

 -I /usr/include \

 -results-dir RESULTS

cxref Example

Here is another C launch command. The compilation is for Linux. Note the escape
characters, allowing quoted strings to be used as compiler defines.

polyspace-code-prover-nodesktop \

 -OS-target linux \

 -prog cxref \

 -O0 \

 -I `pwd` \

 -I sources \

 -I <Polyspace_Install>/include/include.linux \

 -D CXREF_CPP='\"/usr/local/gcc/bin/cpp\"' \

 -D PAGE='\"A4\"' \

 -results-dir RESULTS

T31 Example

Another simple C launcher. There are a couple of tasks and compilation is for an m68k.

polyspace-code-prover-nodesktop \

 -target m68k \

 -entry-points task_callback_main,task_tcp_main,cdtask_depm_main,

task_receiver \

 -to pass1 \

 -prog T31 \

 -O0 \

 -results-dir `pwd`/RESULTS_31 \

Dishwasher1 Example

Another C example. This one is for the c-167 and has tasks protected by critical section.

6 Examples

6-4

polyspace-code-prover-nodesktop \

 -target c-167 \

 -entry-points periodic,pst_main \

 -D PST -D const= -D water= \

 -from scratch \

 -to pass4 \

 -critical-section-begin "critical_enter:cs1" \

 -critical-section-end "critical_exit:cs1" \

 -prog dishwasher1 \

 -I `pwd`/sources \

 -O0 \

 -results-dir RESULTS

Satellite Example

A C example with tasks and critical sections.

polyspace-code-prover-nodesktop

 -target c-167 \

 -entry-points ctask0,ctask1,ctask2,ctask3,interrupts \

 -O2 \

 -keep-all-files \

 -from scratch \

 -critical-section-begin "DisableInterrupts:sc1" \

 -critical-section-end "EnableInterrupts:sc1" \

 -ignore-constant-overflows \

 -include `pwd`/sources/options.h \

 -to pass4 \

 -prog satellite \

 -I `pwd`/sources \

 -results-dir RESULTS

7

Functions

7 Functions

7-2

pslinkfun
Manage model analysis at the command line

Syntax

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value)

pslinkfun('openresults',systemName)

pslinkfun('settemplate',psprjFile)

prjTemplate = pslinkfun('gettemplate')

pslinkfun('advancedoptions')

pslinkfun('enablebacktomodel')

pslinkfun('help')

pslinkfun('metrics')

pslinkfun('jobmonitor')

pslinkfun('stop')

Description

pslinkfun('annotations','type',typeValue,'kind',kindValue,

Name,Value) adds an annotation of type typeValue and kind kindValue to the
selected block in the model. You can specify a different block using a Name,Value pair
argument. You can also add notes about a severity classification, an action status, or
other comments using Name,Value pairs.

In the generated code associated with the annotated block, Polyspace adds code
comments before and after the lines of code. Polyspace reads these comments and marks
Polyspace results of the specified kind with the annotated information.

Syntax limitations:

• You can have only one annotation per block. If a block produces both a rule violation
and an error, you can annotate only one type.

 pslinkfun

7-3

• Even though you apply annotations to individual blocks, the scope of the annotation
can be larger. The generated code from one block can overlap with another, causing
the annotation to also overlap.

For example, consider this model. The first summation block has a Polyspace
annotation, but the second does not.

However, the associated generated code adds all three inputs in one line of code.

/* polyspace:begin<RTE:OVFL:Medium:Fix>*/

annotate_y.Out1=(annotate_u.In1+annotate_U.In2)+annotate_U.In3;

/* polyspace:end<RTE:OVFL:Medium:Fix> */

Therefore, the annotation justifies both summations.

pslinkfun('openresults',systemName) opens the Polyspace results associated
with the model or subsystem systemName in the Polyspace environment. If analysis
results do not exist for systemName, Polyspace opens to the Project Browser pane.

pslinkfun('settemplate',psprjFile) sets the configuration file for new
verifications.

prjTemplate = pslinkfun('gettemplate') returns the template configuration file
used for new analyses.

pslinkfun('advancedoptions') opens the advanced verification options window to
configure additional options for the current model.

pslinkfun('enablebacktomodel') enables the back-to-model feature of the
Simulink plug-in. If your Polyspace results do not properly link to back to the model
blocks, run this command.

pslinkfun('help') opens the Polyspace documentation in a separate window. Use
this option for only pre-R2013b versions of MATLAB.

pslinkfun('metrics') opens the Polyspace Metrics interface.

7 Functions

7-4

pslinkfun('jobmonitor') opens the Polyspace Job Monitor to display remote
verifications in the queue.

pslinkfun('stop') kills the code analysis that is currently running. Use this option
for local analyses only.

Examples

Annotate a Block and Run a Polyspace Code Prover Verification

Use the Polyspace annotation function to annotate a block and see the annotation in the
verification results.

In the example model WhereAreTheErrors_v2, set the current block to the division block
of the 10* x // (x-y) subsystem. Then, add an annotation to the current block to
mark division by zero (DIV) errors as justified with the annotation.

model = 'WhereAreTheErrors_v2';

open(model)

gcb = 'WhereAreTheErrors_v2/10* x // (x-y)/Divide';

pslinkfun('annotations','type','RTE','kind','ZDV','status',...

 'justify with annotation','comment','verified not an error')

In Simulink, the division block of the 10* x // (x-y) subsystem now has a Polyspace
annotation.

At the command line, generate code for the model and run a verification. After the
analysis is finished, open the result in the Polyspace environment:

slbuild(model)

pslinkrun(model)

pslinkfun('openresults',model)

If you look at the orange division by zero error, the check is justified and includes the
status and comments from your annotation.

Add Batch Options to Default Configuration Template

Change advanced Polyspace options and set the new configuration as a template.

Load the model WhereAreTheErrors_v2 and open the advanced options window.

model = 'WhereAreTheErrors_v2';

 pslinkfun

7-5

load_system(model)

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the options Batch and Add to results
repository.

Set the configuration template for new Polyspace analyses to have these options.

pslinkfun('settemplate',fullfile(cd,'pslink_config',...

 'WhereAreTheErrors_v2_config.psprj'))

View the current Polyspace template.

template = pslinkfun('gettemplate')

template =

C:\ModelLinkDemo\pslink_config\WhereAreTheErrors_v2_config.psprj

View Polyspace Queue and Metrics

Run a remote analysis, view the analysis in the queue, and review the metrics.

Before performing this example, check that your Polyspace configuration is set up for
remote analysis and Polyspace Metrics.

Build the model WhereAreTheErrors_v2, create a Polyspace options object, set the
verification mode, and open the advanced options window.

model = 'WhereAreTheErrors_v2';

load_system(model)

slbuild(model)

opts = pslinkoptions(model);

opts.VerificationMode = 'CodeProver';

pslinkfun('advancedoptions')

In the Distributed Computing pane, select the Batch and Add to results repository
options.

Run Polyspace, then open the Job Monitor to monitor your remote job.

pslinkrun(model,opts)

pslinkfun('jobmonitor')

After your job is finished, open the metrics server to see your job in the repository.

7 Functions

7-6

pslinkfun('metrics')

Input Arguments

typeValue — type of result
'RTE' | 'MISRA-C' | 'MISRA-AC-AGC' | 'MISRA-CPP' | 'JSF'

The type of result with which to annotate the block, specified as:

• ‘RTE’ for run-time errors.
• ‘MISRA-C’ for MISRA C coding rule violations (C code only).
• ‘MISRA-AC-AGC’ for MISRA C coding rule violations (C code only).
• ‘MISRA-CPP’ for MISRA C++ coding rule violations (C++ code only).
• ‘JSF’ for JSF C++ coding rule violations (C++ code only).

Example: ‘type’,'MISRA-C'

kindValue — specific check or coding rule
check acronym | rule number

The specific check or coding rule specified by the acronym of the check or the coding rule
number. For the specific input for each type of annotation, see the following table.

type Value kind Values

‘RTE’ Use the abbreviation associated with the type of check that you
want to annotate. For example, 'UNR' – Unreachable Code.

For the list of possible checks, see: “Run-Time Checks”.
‘MISRA-C’ Use the rule number that you want to annotate. For example,

'2.2'.

For the list of supported MISRA C rules and their numbers, see
“Supported MISRA C:2004 and MISRA AC AGC Rules”.

‘MISRA-AC-AGC’ Use the rule number that you want to annotate. For example,
'2.2'.

For the list of supported MISRA AC AGC rules and their
numbers, see “Supported MISRA C:2004 and MISRA AC AGC
Rules”.

 pslinkfun

7-7

type Value kind Values

‘MISRA-CPP’ Use the rule number that you want to annotate. For example,
'0-1-1'.

For the list of supported MISRA C++ rules and their numbers, see
“Supported MISRA C++ Coding Rules”.

‘JSF’ Use the rule number that you want to annotate. For example,
'3'.

For the list of supported JSF C++ rules and their numbers, see
“Supported JSF C++ Coding Rules”.

Example: pslinkfun('annotations','type','MISRA-CPP','kind','1-2-3')

Data Types: char

systemName — Simulink model
system | subsystem

Simulink model specified by the system or subsystem name.
Example: pslinkfun('openresults','WhereAreTheErrors_v2')

psprjFile — Polyspace project file
standard Polyspace template (default) | absolute path to .psprj file

Polyspace project file specified as the absolute path to the .psprj project file. If
psprjFile is empty, Polyspace uses the standard Polyspace template file. New
Polyspace projects start with this project configuration.
Example: pslinkfun('settemplate', fullfile(matlabroot,
'polyspace', 'examples', 'cxx', 'Bug_Finder_Example',

'Bug_Finder_Example.bf.psprj'));

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘block’,’MyModel\Sum’, ‘status’,’fix’

7 Functions

7-8

'block' — block to be annotated
gcb (default) | block name

The block you want to annotate specified by the block name. If you do not use this option,
the block returned by the function gcb is annotated.

Example: 'block','MyModel\Sum'

'class' — severity of the check
'high' | 'medium' | 'low' | 'not a defect' | 'unset'

Severity of the check specified as high, medium, low, not a defect, or unset.

Example: 'class','high'

'status' — action status
'undecided' | 'investigate' | 'fix' | 'improve' | 'restart with different
options' | 'justify with annotation' | 'no action planned' | 'other'

Action status of the check specified as undecided, investigate, fix, improve,
restart with different options, justify with annotation, no action
planned, or other.

The statuses, justify with annotation and no action planned, also mark the
result as justified.
Example: 'status','no action planned'

'comment' — additional comments
string

Additional comments specified as a string. The comments provide more information
about why the results are justified.
Example: 'comment','defensive code'

See Also
pslinkrun | pslinkoptions | gcb

Introduced in R2014a

 pslinkoptions

7-9

pslinkoptions
Create options object to customize Polyspace runs from MATLAB command line

Syntax

opts = pslinkoptions(codegen)

opts = pslinkoptions(model)

Description

opts = pslinkoptions(codegen) returns an options object with the configuration
options for code generated by codegen.

opts = pslinkoptions(model) returns an options object with the configuration
options for the Simulink model.

Examples

Use a Simulink model to create and edit an options objects

Load psdemo_model_link_sl and create a Polyspace® options object from the model:

load_system('psdemo_model_link_sl');

model_opt = pslinkoptions('psdemo_model_link_sl')

This model was saved in a previous release. The overflow diagnostic setting for Stateflow & MATLAB Function blocks is now set to 'warning'. To change overflow diagnostic, set Wrap on overflow in the Diagnostics: Data Validity pane of the Model Configuration Parameters dialog box. For more information, see Wrap on overflow

Start Compiling Command_Strategy

 mex('-IB:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl', '-IC:\TEMP\Bdoc15b_268468_5864\tp0b8b3157_f2c4_45bb_a214_33925f23bb5e', '-c', '-outdir', 'C:\TEMP\Bdoc15b_268468_5864\tp2b7a850d_88c9_4070_8e37_9f3d7a1049fc', 'B:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl\command_strategy_file.c')

Building with 'Microsoft Visual C++ 2012 (C)'.

MEX completed successfully.

 mex('Command_Strategy.c', '-IB:\matlab\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl', '-IC:\TEMP\Bdoc15b_268468_5864\tp0b8b3157_f2c4_45bb_a214_33925f23bb5e', 'C:\TEMP\Bdoc15b_268468_5864\tp2b7a850d_88c9_4070_8e37_9f3d7a1049fc\command_strategy_file.obj')

Building with 'Microsoft Visual C++ 2012 (C)'.

MEX completed successfully.

Finish Compiling Command_Strategy

Exit

7 Functions

7-10

model_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'All'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

The model is already configured for Embedded Coder®, so only the Embedded
Coder configuration options appear. Change the results folder name option and set
OpenProjectManager to true

model_opt.ResultDir = 'results_v1_$ModelName$';

model_opt.OpenProjectManager = true

model_opt =

 ResultDir: 'results_v1_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'All'

 pslinkoptions

7-11

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for Embedded Coder at the command line

Create a Polyspace® options object called new_opt with Embedded Coder® parameters:

new_opt = pslinkoptions('ec')

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

7 Functions

7-12

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 ModelRefVerifDepth: 'Current model only'

 ModelRefByModelRefVerif: 0

 CxxVerificationSettings: 'PrjConfig'

 CheckConfigBeforeAnalysis: 'OnWarn'

Create and edit an options object for TargetLink at the command line

Create a Polyspace® options object called new_opt with TargetLink® parameters:

new_opt = pslinkoptions('tl')

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfig'

 OpenProjectManager: 0

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 0

Set the OpenProjectManager option to true to follow the progress in the Polyspace
interface. Also change the configuration to check for both run-time errors and MISRA C®
coding rule violations:

 pslinkoptions

7-13

new_opt.OpenProjectManager = true;

new_opt.VerificationSettings = 'PrjConfigAndMisra'

new_opt =

 ResultDir: 'results_$ModelName$'

 VerificationSettings: 'PrjConfigAndMisra'

 OpenProjectManager: 1

 AddSuffixToResultDir: 0

 EnableAdditionalFileList: 0

 AdditionalFileList: {}

 VerificationMode: 'CodeProver'

 EnablePrjConfigFile: 0

 PrjConfigFile: ''

 AddToSimulinkProject: 0

 InputRangeMode: 'DesignMinMax'

 ParamRangeMode: 'None'

 OutputRangeMode: 'None'

 AutoStubLUT: 0

Input Arguments

codegen — Code generator
'ec' | 'tl'

Code generator, specified as either 'ec' for Embedded Coder® or 'tl' for TargetLink®.
Each argument creates a Polyspace options object with properties specific to that code
generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: ec_opt = pslinkoptions('ec')

Example: tl_opt = pslinkoptions('tl')

Data Types: char

model — Simulink model
model name

7 Functions

7-14

Simulink model, specified by the model name. Creates a Polyspace options object with
the configuration options of that model. If you do not set any options, the object has the
default configuration options. If a code generator has been set, the object has the default
options for that code generator.

For a description of all configuration options and their values, see pslinkoptions
Properties.
Example: model_opt = pslinkoptions('my_model')

Data Types: char

Output Arguments

opts — Polyspace configuration options
options object

Polyspace configuration options, returned as an options object. The object is used with
pslinkrun to run Polyspace from the MATLAB command line.

For the list of object properties, see pslinkoptions Properties.
Example: opts= pslinkoptions('ec')
opts.VerificationSettings = 'Misra'

More About
• pslinkoptions Properties

See Also
pslinkfun | pslinkrun

Introduced in R2012a

 pslinkrun

7-15

pslinkrun

Run Polyspace analysis on generated code from MATLAB command line

Syntax

resultsFolder = pslinkrun

resultsFolder = pslinkrun(system)

resultsFolder = pslinkrun(system,opts)

resultsFolder = pslinkrun(system,opts,asModelRef)

Description

resultsFolder = pslinkrun on generated code from the current system and returns
the location of the results folder. It uses the analysis options associated with the current
system. The current system, or model, is the system returned by the command bdroot.

resultsFolder = pslinkrun(system) runs Polyspace on the code generated from
the model or subsystem specified by system. It uses the analysis options associated with
system.

resultsFolder = pslinkrun(system,opts) analyzes system using the analysis
options from the options object opts.

resultsFolder = pslinkrun(system,opts,asModelRef) uses asModelRef to
specify which type of generated code to analyze, standalone code or model reference code.
This option is useful when you want to analyze only a referenced model instead of an
entire model hierarchy.

Examples

Run Polyspace from the Command Line

Use a Simulink model to generate code, set configuration options, and then run an
analysis from the command line.

7 Functions

7-16

Load and build the model WhereAreTheErrors to generate code.

model = 'WhereAreTheErrors';

load_system(model)

slbuild(model)

Create a Polyspace options object from the model and change the configuration to run a
Code Prover verification.

opts = pslinkoptions(model);

opts.VerificationMode = 'CodeProver';

opts.VerificationSettings = 'PrjConfigAndMisra2012';

Run Polyspace using your options object:

results = pslinkrun(model,opts)

The results are saved to the results_WhereAreTheErrors folder, listed in the
results variable.

Build and Analyze Referenced Model Code from the Command Line

Use a Simulink model to generate reference code, set configuration options, and then run
an analysis from the command line.

Load and build the model WhereAreTheErrors to generate code as if it is referenced by
another model:

model = 'WhereAreTheErrors';

load_system(model);

slbuild(model,'ModelReferenceRTWTargetOnly');

Create a Polyspace options object from the model and change the configuration to run a
Code Prover verification.

opts = pslinkoptions(model);

opts.VerificationMode = 'CodeProver';

opts.VerificationSettings = 'PrjConfigAndMisra2012';

Run Polyspace using your options object:

results = pslinkrun(model,opts,true)

 pslinkrun

7-17

The results are saved to the results_mr_WhereAreTheErrors folder, listed in the
results variable.

Input Arguments

system — Model or system
bdroot (default) | model or system name

Model or system that you want to analyze, specified as a string, with the model or system
name in single quotes. The default value is the system returned by bdroot.

Example: resultsFolder = pslinkrun('demo') where demo is the name of a model.

Data Types: char

opts — Analysis options
options associated with system (default) | Polyspace options object

Analysis options for the analysis, specified as an options object or the options already
associated with the model or system. The function pslinkoptions creates an options
object. You can customize the options object by changing the
Example: pslinkrun('demo', opts_demo) where demo is the name of a model and
opts_demo is an options object.

asModelRef — Indicator for model reference analysis
false (default) | true

Indicator for model reference analysis, specified as true or false.

• If asModelRef is false (default), Polyspace analyzes code generated as standalone
code. This option is equivalent to choosing Verify Code Generated For > Model in
the Simulink Polyspace options.

• If asModelRef is true, Polyspace analyzes code generated as model referenced code.
This option is equivalent to choosing Verify Code Generated For > Referenced
Model in the Simulink Polyspace options.

Data Types: logical

7 Functions

7-18

Output Arguments

resultsFolder — Variable for location of the results folder
string

Variable for location of the results folder, specified as a string. The default value of this
variable is results_$ModelName$. You can change this value in the configuration
options using pslinkoptions.

Data Types: char

See Also
pslinkfun | pslinkoptions

Introduced in R2012a

 polyspaceCodeProver

7-19

polyspaceCodeProver
Run Polyspace Code Prover verification from MATLAB

Syntax

polyspaceCodeProver

polyspaceCodeProver(projectFile)

polyspaceCodeProver(resultsFile)

polyspaceCodeProver('-results-dir',resultsFolder)

polyspaceCodeProver('-help')

polyspaceCodeProver('-sources',sourceFiles)

polyspaceCodeProver('-sources',sourceFiles,Name,Value)

Description

polyspaceCodeProver opens Polyspace Code Prover.

polyspaceCodeProver(projectFile) opens a Polyspace project file in Polyspace
Code Prover.

polyspaceCodeProver(resultsFile) opens a Polyspace results file in Polyspace
Code Prover.

polyspaceCodeProver('-results-dir',resultsFolder) opens a Polyspace
results file from resultsFolder in Polyspace Code Prover.

polyspaceCodeProver('-help') displays all options that can be supplied to the
polyspaceCodeProver command to run a Polyspace Code Prover verification.

polyspaceCodeProver('-sources',sourceFiles) runs a Polyspace Code Prover
verification on the source files specified in sourceFiles.

polyspaceCodeProver('-sources',sourceFiles,Name,Value) runs a Polyspace
Code Prover verification on the source files with additional options specified by one or
more Name,Value pair arguments.

7 Functions

7-20

Examples

Open Polyspace Projects from MATLAB

This example shows how to open a Polyspace project file with extension .psprj from
MATLAB. In this example, you open the project file Demo_C.psprj from the folder
Matlab_Install\polyspace\examples\cxx\Demo_C.

Assign the full path to the project file to a MATLAB variable prjFile.

prjFile = fullfile(matlabroot, 'polyspace', 'examples', 'cxx', ...

 'Demo_C', 'Demo_C.psprj');

Use prjFile to open the project.

polyspaceCodeProver(prjFile)

Open Polyspace Results from MATLAB

This example shows how to open a Polyspace results file from MATLAB. In this example,
you open the results file from the folder Matlab_Install\polyspace\examples\cxx
\Demo_C\Module_1\Result_1.

Assign the full path to the folder to a MATLAB variable resFolder.

resFolder = fullfile(matlabroot, 'polyspace', 'examples', ...

 'cxx', 'Demo_C', 'Module_1', 'Result_1');

Use resFolder to open the results.

polyspaceCodeProver('-results-dir',resFolder)

Run Polyspace Verification from MATLAB

This example shows how to run a Polyspace verification on a single source file from the
MATLAB command-line. For this example:

• Save a C source file, source.c, in the folder C:\Polyspace_Sources.
• Save an include file in the folder C:\Polyspace_Includes.

Run the following command on the MATLAB command line.

polyspaceCodeProver('-sources','C:\Polyspace_Sources\source.c', ...

 polyspaceCodeProver

7-21

 '-I','C:\Polyspace_Includes', ...

 '-results-dir','C:\Polyspace_Results')

Polyspace runs on the file C:\Polyspace_Sources\source.c and stores the result in
C:\Polyspace_Results.

To view the results from the MATLAB command line, enter:

polyspaceCodeProver('-results-dir','C:\')

Run Polyspace Verification with Coding Rules Checking

This example shows how to run a Polyspace verification with additional options. You
can specify as many additional options as you want as “Name-Value Pair Arguments” on
page 7-23. Here you specify:

• Checking of MISRA C coding rules using the option -misra2. For more information,
see “Check MISRA C:2004” on page 1-52.

• Excluding header files from coding rules checking using the option -includes-to-
ignore. For more information, see “Files and folders to ignore (C)” on page 1-63.

• Automatic generation of main function using the option -main-generator. For more
information, see “Verify module (C)” on page 1-70.

Assign the source file path to a MATLAB variable sourceFileName.

sourceFileName = fullfile(matlabroot, 'polyspace',...

'examples', 'cxx', 'Demo_C_Single-File','sources','example.c')

Assign the include file path to a MATLAB variable includeFileName.

includeFileName = fullfile(matlabroot, 'polyspace',...

'examples', 'cxx', 'Demo_C_Single-File','sources','include.h')

Assign the results folder path to a MATLAB variable resFolder.

resFolder = fullfile('C:\','Polyspace_Results')

Run Polyspace Code Prover verification with additional options -misra2, -includes-
to-ignore and -main-generator.

polyspaceCodeProver('-sources',sourceFileName,...

 '-I',includeFileName, ...

 '-results-dir',resFolder,'-misra2','required-rules',...

7 Functions

7-22

 '-includes-to-ignore','all-headers','-main-generator')

Open the results file.

polyspaceCodeProver('-results-dir',resFolder)

Input Arguments

projectFile — Name of .psprj file
string

Name of project file with extension .psprj, specified as a string.

If the file is not in the current folder, projectFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.

Example: 'C:\Polyspace_Projects\myProject.psprj'

resultsFile — Name of .pscp file
string

Name of results file with extension .pscp, specified as a string.

If the file is not in the current folder, resultsFile must include a full or relative path.
Use pwd to identify the current folder and cd to change the current folder.

Example: 'myResults.psbf'

resultsFolder — Name of result folder
string

Name of result folder, specified as a string. The folder must contain the results file with
extension .psbf. If the results file resides in a subfolder of the specified folder, this
command does not open the results file.

If the folder is not in the current folder, resultsFolder must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.

Example: 'C:\Polyspace\Results\'

sourceFiles — Comma-separated names of .c or .cpp files
string

 polyspaceCodeProver

7-23

Comma-separated source file names with extension .c or .cpp, specified as a single
string.

If the files are not in the current folder, sourceFiles must include a full or relative
path. Use pwd to identify the current folder and cd to change the current folder.

Example: 'myFile.c', 'C:\mySources\myFile1.c,C:\mySources\myFile2.c'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: '-OS-target','Linux','-dialect','gnu4.6' specifies that the source
code is intended for the Linux operating system and contains non-ANSI C syntax for the
GCC 4.6 dialect.

For the full list of analysis options, see “Analysis Options”.

Introduced in R2013b

7 Functions

7-24

polyspaceConfigure
Create Polyspace project from your build system at the MATLAB command line

Syntax
polyspaceConfigure buildCommand

polyspaceConfigure buildCommand -option value

Description
polyspaceConfigure buildCommand traces your build system and creates a
Polyspace project with information gathered from your build system.

polyspaceConfigure buildCommand -option value traces your build system and
uses the flag -option value to modify the default operation of polyspaceConfigure.

Examples
Create Polyspace Project from Makefile

This example shows how to create a Polyspace project if you use the command make
targetName buildOptions to build your source code.

Create a Polyspace project specifying a unique project name. Use the -B or -W
makefileName option with make so that the all prerequisite targets in the makefile are
remade.

polyspaceConfigure -prog myProject ...

 make -B targetName buildOptions

Open the Polyspace project in the Project Browser.

polyspaceCodeProver('myProject.psprj')

Run Command-Line Polyspace Analysis from Makefile

This example shows how to run Polyspace analysis if you use the command make
targetName buildOptions to build your source code. In this example, you use

 polyspaceConfigure

7-25

polyspaceConfigure to trace your build system but do not create a Polyspace project.
Instead you create an options file that you can use to run Polyspace analysis from
command-line.

Create a Polyspace options file specifying the -output-options-file command. Use
the -B or -W makefileName option with make so that all prerequisite targets in the
makefile are remade.

polyspaceConfigure -no-project -output-options-file ...

 myOptions make -B targetName buildOptions

Use the options file that you created to run a Polyspace analysis at the command line:

polyspaceCodeProver -options-file myOptions

Trace Incremental Makefile Builds

This example shows how to trace incremental makefile builds to keep your Polyspace
project updated. If you use this approach, polyspaceConfigure does not have to trace
the entire makefile every time you make a change to it.

Create a Polyspace project from your makefile using polyspaceConfigure. For this
first project creation:

• Use the -B or -W makefileName option with make so that all prerequisite targets in
the makefile are remade.

For the list of options allowed with the GNU make, see make options.
• Use the -incremental option so that the build trace information is saved.

polyspaceConfigure -prog myProject ...

 -incremental make -B targetName buildOptions

After you add, remove or change source files, to keep your Polyspace project updated,
rerun polyspaceConfigure with the same options. Do not use the -B or -W
makefileName option with make.

polyspaceConfigure -prog myProject ...

 -incremental make targetName buildOptions

The polyspaceConfigure function uses the previous build trace information to
incrementally add or remove the updated files to your Polyspace project. It does not trace
the entire makefile.

• “Create Project Automatically”

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

7 Functions

7-26

Input Arguments

buildCommand — Command for building source code
build command

Build command specified exactly as you use to build your source code.
Example: make -B, make -W makefileName

-option value — Options for changing default operation of polyspaceConfigure
single option starting with -, followed by argument | multiple space-separated option-
argument pairs

Basic Options

Option Argument Description

-allow-build-error None Option to create a Polyspace project even if there
is an error in the build process.

If there is an error, the build trace log shows the
following message:

polyspace-configure ERROR: build command

 command_name fail [status=status_value]

command_name is the build command name that
you use and status_value is the non-zero exit
status or error level that indicates which error
occurred in your build process.

-author Author name Name of project author.

Example: -author jsmith
-code-prover (default) | -
bug-finder

None Option to create a Polyspace Bug Finder™ or
Polyspace Code Prover project.

-debug None Option used by MathWorks technical support
-help None Option to display the full list of

polyspaceConfigure commands
-lang auto(default)

|c|cpp
Option to specify source code language. By
default,polyspaceConfigure detects the
language. If it detects a mixture of languages

 polyspaceConfigure

7-27

Option Argument Description

in the compilation units, it assigns C++ as the
project language. If it detects the use of C++11,
it allows C++11 extensions.

-output-options-file None Option to create a Polyspace analysis options
file. Use this file for command-line analysis
using polyspaceCodeProver.

-output-project Path Project file name and location for saving project.
The default is the file polyspace.psprj in the
current folder.

Example: -output-project ../
myProjects/project1

-prog Project name Project name that appears in the Polyspace user
interface. The default is polyspace.

Example: -prog myProject
-silent (default) | -
verbose

None Option to suppress or display additional
messages from running polyspaceConfigure.

Advanced Options

Option Argument Description

-compiler-config Path and file
name

Location and name of compiler configuration file.

The file must be in a specific format. For
guidance, see the existing configuration files
in matlabroot\polyspace\configure\
compiler_configuration\. For information
on the contents of the file, see “Compiler Not
Supported for Project Creation from Build
Systems”.

Example: -compiler-configuration
myCompiler.xml

-incremental None Option to save build trace information for reuse
in incremental builds

7 Functions

7-28

Option Argument Description

-no-build None Option to create a Polyspace project using
previously saved build trace information.

To use this option, you must have the build
trace information saved from an earlier run of
polyspaceConfigure with the -no-project
option.

If you use this option, you do not need to specify
the buildCommand argument.

-no-project None Option to trace your build system without
creating a Polyspace project and save the build
trace information.

Use this option to save your build
trace information for a later run of
polyspaceConfigure with the -no-build
option.

-tmp-path Path Location of folder where temporary files are
stored.

Cache Control Options

Option Argument Description

-build-trace Path and file
name

Location and name of file where build
information is stored. The default is ./
polyspace_configure_build_trace.log.

Example: -build-trace ../build_info/
trace.log

-no-cache | -cache-
sources (default) | -cache-
all-files

None Option to perform one of the following:

• Not create a cache
• Cache only source and header files.
• Cache all files including binaries.

-cache-path Path Location of folder where cache information is
stored.

 polyspaceConfigure

7-29

Option Argument Description

Example: -cache-path ../cache

More About
• “Requirements for Project Creation from Build Systems”
• “Compiler Not Supported for Project Creation from Build Systems”

Introduced in R2013b

7 Functions

7-30

polyspaceJobsManager
Manage Polyspace jobs on a MATLAB Distributed Computing Server cluster

Syntax

polyspaceJobsManager('listjobs')

polyspaceJobsManager('cancel','-job',jobNumber)

polyspaceJobsManager('remove','-job',jobNumber)

polyspaceJobsManager('getlog','-job',jobNumber)

polyspaceJobsManager('wait','-job',jobNumber)

polyspaceJobsManager('promote','-job',jobNumber)

polyspaceJobsManager('demote','-job',jobNumber)

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder)

polyspaceJobsManager(___ ,'-scheduler',scheduler)

Description

polyspaceJobsManager('listjobs') lists all Polyspace jobs in your cluster.

polyspaceJobsManager('cancel','-job',jobNumber) cancels the specified job.
The job appears in your queue as cancelled.

polyspaceJobsManager('remove','-job',jobNumber) removes the specified job
from your cluster.

polyspaceJobsManager('getlog','-job',jobNumber) displays the log for the
specified job.

polyspaceJobsManager('wait','-job',jobNumber) pauses until the specified job
is done.

polyspaceJobsManager('promote','-job',jobNumber) moves the specified job up
in the MATLAB job scheduler queue.

polyspaceJobsManager('demote','-job',jobNumber) moves the specified job
down in the MATLAB job scheduler queue.

 polyspaceJobsManager

7-31

polyspaceJobsManager('download','-job',jobNumber,'-results-folder',

resultsFolder) downloads the results from the specified job to resultsFolder.

polyspaceJobsManager(___ ,'-scheduler',scheduler) performs the specified
action on the job scheduler specified. If you do not specify a server with any of the
previous syntaxes, Polyspace uses the server stored in your Polyspace preferences.

Examples

Manipulate Two Jobs in the Cluster

In this example, use a MJS scheduler to run Polyspace remotely and monitor your jobs
through the queue.

Before performing this example, set up an MJS and Polyspace Metrics. This example
uses the myMJS@myCompany.com scheduler. When you perform this example, replace
this scheduler with your own cluster name.

Set up your source files.

mkdir 'C:\psdemo\src'

demo = fullfile(matlabroot,'polyspace','examples','cxx',...

'Demo_C','sources');

copyfile(demo,'C:\psdemo\src\')

Submit two jobs to your scheduler.

polyspaceCodeProver -batch -scheduler myMJS@myCompany.com

 -sources C:\psdemo\src*.c'

 -results-dir 'C:\psdemo\res1'

polyspaceCodeProver -batch -scheduler myMJS@myCompany.com

 -sources 'C:\psdemo\src\main.c'

 -results-dir 'C:\psdemo\res2'

 -add-to-results-repository

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 queued Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 queued Wed Mar 16 16:48:38 EST 2014 C Batch

If your jobs have not started running, promote the second job to run before the first job.

7 Functions

7-32

polyspaceJobsManager('promote','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Job 20 starts running before job 19.

Cancel job 19.

polyspaceJobsManager('cancel','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

19 user Polyspace C:\psdemo\res1 cancelled Wed Mar 16 16:48:38 EST 2014 C Batch

20 user Polyspace C:\psdemo\res2 running Wed Mar 16 16:48:38 EST 2014 C Batch

Remove job 19.

polyspaceJobsManager('remove','-job','19','-scheduler',...

 'myMJS@myCompany.com')

polyspaceJobsManager('listjobs','-scheduler','myMJS@myCompany.com')

ID AUTHOR APPLICATION LOCAL_RESULTS_DIR WORKER STATUS DATE LANG CLUSTER_MODE

...

20 user Polyspace C:\psdemo\res2 completed Wed Mar 16 16:48:38 EST 2014 C Batch

Get the log for job 20.

polyspaceJobsManager('getlog','-job','20','-scheduler',...

 'myMJS@myCompany.com')

Download the information from job 20.

polyspaceJobsManager('download','-job','20','-results-folder', ...

 'C:\psdemo\res3','-scheduler','myCluster')

Input Arguments

jobNumber — Queued job number
string

Number of the queued job that you want to manage, specified as a string in single quotes.
Example: '-job','10'

 polyspaceJobsManager

7-33

resultsFolder — Path to results folder
string

Path to results folder specified as a string in single quotes. This folder stores the
downloaded results files.
Example: '-results-folder','C:\psdemo\myresults'

scheduler — job scheduler
head node of your cluster | job scheduler name | cluster profile

Job scheduler for remote verifications specified as one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

Example: '-scheduler','myscheduler@mycompany.com'

More About
• “Clusters and Cluster Profiles”
• “Run Remote Analysis at Command Line”

See Also
polyspaceCodeProver

Introduced in R2013b

7 Functions

7-34

pslinkoptions Properties
Properties for the pslinkoptions object

You can create a pslinkoptions object to customize your analysis at the command-line.
Use these properties to specify configuration options, where and how to store results, any
additional files to include, and data range modes.

Configuration Options

VerificationSettings — Coding rule and configuration settings for C code
'PrjConfig' (default) | 'PrjConfigAndMisraAGC' | 'PrjConfigAndMisra' |
'PrjConfigAndMisraC2012' | 'MisraAGC' | 'Misra' | 'MisraC2012'

Coding rule and configuration settings for C code specified as:

• 'PrjConfig' – Inherit options from the project configuration.
• 'PrjConfigAndMisraAGC' – Inherit options from the project configuration and

enable MISRA AC AGC rule checking.
• 'PrjConfigAndMisra' – Inherit options from the project configuration and enable

MISRA C:2004 rule checking.
• 'PrjConfigAndMisraC2012' – Inherit options from the project configuration and

enable MISRA C:2012 guideline checking.
• 'MisraAGC' – Enable MISRA AC AGC rule checking. This option runs only

compilation and rule checking.
• 'Misra' – Enable MISRA C:2004 rule checking. This option runs only compilation

and rule checking.
• 'MisraC2012' – Enable MISRA C:2012 rule checking. This option runs only

compilation and guideline checking.

Example: opt.VerificationSettings = 'PrjConfigAndMisraC2012'

VerificationMode — Polyspace mode
'CodeProver' (default) | 'BugFinder'

Polyspace mode specified as 'BugFinder', for a Bug Finder analysis, or 'CodeProver',
for a Code Prover verification.
Example: opt.VerificationMode = ‘BugFinder’;

 pslinkoptions Properties

7-35

EnablePrjConfigFile — Allow a custom configuration file
false (default) | true

Allows a custom configuration file instead of the default configuration specified as true or
false. Use the PrjConfigFile option to specify the configuration file.

Example: opt.EnablePrjConfigFile = true;

PrjConfigFile — Custom configuration file
'' (default) | full path to a .prprj file

Custom configuration file to use instead of the default configuration specified by the full
path to a .psprj file. Use the EnablePrjConfigFile option to use this configuration
file during your analysis.
Example: opt.PrjConfigFile = 'C:\Polyspace\config.psprj';

CheckConfigBeforeAnalysis — Configuration check before analysis
'OnWarn' (default) | 'OnHalt' | 'Off'

This property sets the level of configuration checking done before the verification starts.
The configuration check before analysis is specified as:

• 'Off' — Checks only for errors. Stops if errors are found.
• 'OnWarn' — Stops for errors. Displays a message for warnings.
• 'OnHalt' — Stops for errors and warnings.

Example: opt.CheckConfigBeforeAnalysis = 'OnHalt';

Results

ResultDir — Results folder name and location
'{'C:\Polyspace_Results\results_$ModelName$' (default) | folder name | folder
path

Results folder name and location specified as the local folder name or the folder path.
This folder is where Polyspace writes the analysis results. This folder name can be
either an absolute path or a path relative to the current folder. The text $ModelName$ is
replaced with the name of the original model.
Example: opt.ResultDir = '\results_v1_$ModelName$';

7 Functions

7-36

AddSuffixToResultDir — Add unique number to the results folder name
false (default) | true

Add unique number to the results folder name specified as true or false. If true, a unique
number is added to the end of every new result. Using this option helps you avoid
overwriting the previous results folders.
Example: opt.AddSuffixToResultDir = true;

OpenProjectManager — Open the Polyspace environment
false (default) | true

Open the Polyspace environment to monitor the progress of the analysis, specified as true
or false. Afterward, you can review the results.
Example: opt.OpenProjectManager = true;

AddToSimulinkProject — Add results to the open Simulink project
false (default) | true

Add your results to the currently open Simulink project, if any, specified as true or false.
This option allows you to keep your Polyspace results organized with the rest of your
project files. If a Simulink project is not open, the results are not added to a Simulink
project.
Example: opt.AddToSimulinkProject = true;

Additional Files

EnableAdditionalFileList — Allow an additional file list
false (default) | true

Allow an additional file list to be analyzed, specified as true or false. Use with the
AdditionalFileList option.

Example: opt.EnableAdditionalFileList = true;

AdditionalFileList — List of additional files to be analyzed
{0x1 cell} (default) | cell array of files

List of additional files to be analyzed specified as a cell array of files. Use with the
EnableAdditionalFileList option to add these files to the analysis.

 pslinkoptions Properties

7-37

Example: opt.AdditionalFileList = {'sources\file1.c', 'sources
\file2.c'};

Data Types: cell

Data Ranges

InputRangeMode — Enable design range information
'DesignMinMax' (default) | 'FullRange'

Enable design range information specified as 'DesignMinMax', to use data ranges
defined in blocks and workspaces, or 'FullRange', to treat inputs as full-range values.

Example: opt.InputRangeMode = 'FullRange';

ParamRangeMode — Enable constant parameter values
'None' (default) | 'DesignMinMax'

Enable constant parameter values, specified as 'None', to use constant parameters
values specified in the code, or 'DesignMinMax' to use a range defined in blocks and
workspaces.
Example: opt.ParamRangeMode = 'DesignMinMax';

OutputRangeMode — Enable output assertions
'None' (default) | 'DesignMinMax'

Enable output assertions specified by 'None', to not apply assertions, or
'DesignMinMax' to apply assertions to outputs using a range defined in blocks and
workspace.
Example: opt.ParamRangeMode = 'DesignMinMax';

Embedded Coder Only

ModelRefVerifDepth — Depth of verification
'Current model only' (default) | '1' | '2' | '3' | 'All'

Depth of verification specified by the model reference level to which you want to analyze.

Only for Embedded Coder

Example: opt.ModelRefVerifDepth = '3';

7 Functions

7-38

ModelRefByModelRefVerif — Model reference analysis mode
false (default) | true

Model reference analysis mode specified as false to verify reference models within the
model hierarchy, or true to verify referenced models individually.

Only for Embedded Coder

Example: opt.ModelRefByModelRefVerif = true;

CxxVerificationSettings — Coding rule and configuration settings for C++ code
'PrjConfig' (default) | 'PrjConfigAndMisraCxx' | 'PrjConfigAndJSF' |
'MisraCxx' | 'JSF'

Coding rule and configuration settings for C++ code specified as:

• 'PrjConfig' – Inherit options from project configuration and run complete analysis.
• 'PrjConfigAndMisraCxx' – Inherit options from project configuration, enable

MISRA C++ rule checking, and run complete analysis.
• 'PrjConfigAndJSF' – Inherit options from project configuration, enable JSF rule

checking, and run complete analysis.
• 'MisraCxx' – Enable MISRA C++ rule checking, and run compilation phase only.
• 'JSF' – Enable JSF rule checking, and run compilation phase only.

Only for Embedded Coder

Example: opt.CxxVerificationSettings = 'MisraCxx';

TargetLink Only

AutoStubLUT — Lookup Table code usage
false (default) | true

Lookup Table code usage specified as true, to use Lookup Table code during the
analysis, or false, to not.

Only for TargetLink

Example: opts.AutoStubLUT = true;

See Also
pslinkoptions | pslinkrun

 Polyspace Code Prover

7-39

Polyspace Code Prover
Prove the absence of run-time errors in software

Description
Polyspace Code Prover uses static analysis and abstract interpretation to prove the
absence of run-time errors in C and C++ code.

You can use it on handwritten code, generated code, or a combination of the two. Each
operation is color-coded to indicate whether it is free of run-time errors, proven to fail,
unreachable, or unproven. Polyspace Code Prover also displays range information for
variables and function return values, and can prove which variables exceed specified
range limits.

Open the Polyspace Code Prover App
• Open from the Apps tab of the MATLAB toolstrip, in the Code Verification group
• Alternatively, start it from the MATLAB command prompt using

polyspaceCodeProver

Examples
• “Run Verification”
• “Run Local Verification at Command Line”

Programmatic Use

polyspaceCodeProver

See Also

Apps
Polyspace Bug Finder

Functions
polyspaceCodeProver | polyspaceConfigure

7 Functions

7-40

Introduced in R2013b

8

MISRA C 2012

MISRA C:2012 Directive 2.1
MISRA C:2012 Directive 4.1
MISRA C:2012 Directive 4.3
MISRA C:2012 Directive 4.5
MISRA C:2012 Directive 4.6
MISRA C:2012 Directive 4.9
MISRA C:2012 Directive 4.10
MISRA C:2012 Directive 4.11
MISRA C:2012 Directive 4.13
MISRA C:2012 Rule 1.1
MISRA C:2012 Rule 1.2
MISRA C:2012 Rule 1.3
MISRA C:2012 Rule 2.1
MISRA C:2012 Rule 2.2
MISRA C:2012 Rule 2.3
MISRA C:2012 Rule 2.4
MISRA C:2012 Rule 2.5
MISRA C:2012 Rule 2.6
MISRA C:2012 Rule 2.7
MISRA C:2012 Rule 3.1
MISRA C:2012 Rule 3.2
MISRA C:2012 Rule 4.1
MISRA C:2012 Rule 4.2
MISRA C:2012 Rule 5.1
MISRA C:2012 Rule 5.2
MISRA C:2012 Rule 5.3
MISRA C:2012 Rule 5.4
MISRA C:2012 Rule 5.5
MISRA C:2012 Rule 5.6
MISRA C:2012 Rule 5.7
MISRA C:2012 Rule 5.8
MISRA C:2012 Rule 5.9

8 MISRA C 2012

8-2

MISRA C:2012 Rule 6.1
MISRA C:2012 Rule 6.2
MISRA C:2012 Rule 7.1
MISRA C:2012 Rule 7.2
MISRA C:2012 Rule 7.3
MISRA C:2012 Rule 7.4
MISRA C:2012 Rule 8.1
MISRA C:2012 Rule 8.2
MISRA C:2012 Rule 8.3
MISRA C:2012 Rule 8.4
MISRA C:2012 Rule 8.5
MISRA C:2012 Rule 8.6
MISRA C:2012 Rule 8.7
MISRA C:2012 Rule 8.8
MISRA C:2012 Rule 8.9
MISRA C:2012 Rule 8.10
MISRA C:2012 Rule 8.11
MISRA C:2012 Rule 8.12
MISRA C:2012 Rule 8.13
MISRA C:2012 Rule 8.14
MISRA C:2012 Rule 9.1
MISRA C:2012 Rule 9.2
MISRA C:2012 Rule 9.3
MISRA C:2012 Rule 9.4
MISRA C:2012 Rule 9.5
MISRA C:2012 Rule 10.1
MISRA C:2012 Rule 10.2
MISRA C:2012 Rule 10.3
MISRA C:2012 Rule 10.4
MISRA C:2012 Rule 10.5
MISRA C:2012 Rule 10.6
MISRA C:2012 Rule 10.7
MISRA C:2012 Rule 10.8
MISRA C:2012 Rule 11.1
MISRA C:2012 Rule 11.2
MISRA C:2012 Rule 11.3
MISRA C:2012 Rule 11.4
MISRA C:2012 Rule 11.5
MISRA C:2012 Rule 11.6
MISRA C:2012 Rule 11.7

 MISRA C 2012

8-3

MISRA C:2012 Rule 11.8
MISRA C:2012 Rule 11.9
MISRA C:2012 Rule 12.1
MISRA C:2012 Rule 12.2
MISRA C:2012 Rule 12.3
MISRA C:2012 Rule 12.4
MISRA C:2012 Rule 13.1
MISRA C:2012 Rule 13.2
MISRA C:2012 Rule 13.3
MISRA C:2012 Rule 13.4
MISRA C:2012 Rule 13.5
MISRA C:2012 Rule 13.6
MISRA C:2012 Rule 14.1
MISRA C:2012 Rule 14.2
MISRA C:2012 Rule 14.3
MISRA C:2012 Rule 14.4
MISRA C:2012 Rule 15.1
MISRA C:2012 Rule 15.2
MISRA C:2012 Rule 15.3
MISRA C:2012 Rule 15.4
MISRA C:2012 Rule 15.5
MISRA C:2012 Rule 15.6
MISRA C:2012 Rule 15.7
MISRA C:2012 Rule 16.1
MISRA C:2012 Rule 16.2
MISRA C:2012 Rule 16.3
MISRA C:2012 Rule 16.4
MISRA C:2012 Rule 16.5
MISRA C:2012 Rule 16.6
MISRA C:2012 Rule 16.7
MISRA C:2012 Rule 17.1
MISRA C:2012 Rule 17.2
MISRA C:2012 Rule 17.3
MISRA C:2012 Rule 17.4
MISRA C:2012 Rule 17.5
MISRA C:2012 Rule 17.6
MISRA C:2012 Rule 17.7
MISRA C:2012 Rule 17.8
MISRA C:2012 Rule 18.1
MISRA C:2012 Rule 18.2

8 MISRA C 2012

8-4

MISRA C:2012 Rule 18.3
MISRA C:2012 Rule 18.4
MISRA C:2012 Rule 18.5
MISRA C:2012 Rule 18.6
MISRA C:2012 Rule 18.7
MISRA C:2012 Rule 18.8
MISRA C:2012 Rule 19.1
MISRA C:2012 Rule 19.2
MISRA C:2012 Rule 20.1
MISRA C:2012 Rule 20.2
MISRA C:2012 Rule 20.3
MISRA C:2012 Rule 20.4
MISRA C:2012 Rule 20.5
MISRA C:2012 Rule 20.6
MISRA C:2012 Rule 20.7
MISRA C:2012 Rule 20.8
MISRA C:2012 Rule 20.9
MISRA C:2012 Rule 20.10
MISRA C:2012 Rule 20.11
MISRA C:2012 Rule 20.12
MISRA C:2012 Rule 20.13
MISRA C:2012 Rule 20.14
MISRA C:2012 Rule 21.1
MISRA C:2012 Rule 21.2
MISRA C:2012 Rule 21.3
MISRA C:2012 Rule 21.4
MISRA C:2012 Rule 21.5
MISRA C:2012 Rule 21.6
MISRA C:2012 Rule 21.7
MISRA C:2012 Rule 21.8
MISRA C:2012 Rule 21.9
MISRA C:2012 Rule 21.10
MISRA C:2012 Rule 21.11
MISRA C:2012 Rule 21.12
MISRA C:2012 Rule 22.5

 MISRA C:2012 Directive 2.1

8-5

MISRA C:2012 Directive 2.1
All source files shall compile without any compilation errors

Description

Rule Definition

All source files shall compile without any compilation errors.

Rationale

A conforming compiler is permitted to produce an object module despite the presence of
compilation errors. However, execution of the resulting program can produce unexpected
behavior.

Polyspace Specification

The software raises a violation of this directive if it finds a compilation error. Because
Code Prover is more strict about compilation errors compared to Bug Finder, the coding
rules checking in the two products can produce different results for this directive.

Message in Report

All source files shall compile without any compilation errors.

Check Information
Group: Compilation and build
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

8 MISRA C 2012

8-6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Directive 4.1

8-7

MISRA C:2012 Directive 4.1
Run-time failures shall be minimized

Description

Rule Definition

Run-time failures shall be minimized.

Rationale

Some areas to concentrate on are:

• Arithmetic errors
• Pointer arithmetic
• Array bound errors
• Function parameters
• Pointer dereferencing
• Dynamic memory

Polyspace Specification

This directive is checked through the Polyspace analysis.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

Run-time failures shall be minimized.

Check Information
Group: Code Design

8 MISRA C 2012

8-8

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.11 | MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 18.1 |
MISRA C:2012 Rule 18.2 | MISRA C:2012 Rule 18.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Directive 4.3

8-9

MISRA C:2012 Directive 4.3
Assembly language shall be encapsulated and isolated

Description

Rule Definition

Assembly language shall be encapsulated and isolated.

Rationale

Encapsulating assembly language is beneficial because:

• It improves readability.
• The name, and documentation, of the encapsulating macro or function makes the

intent of the assembly language clear.
• All uses of assembly language for a given purpose can share encapsulation, which

improves maintainability.
• You can easily substitute the assembly language for a different target or for purposes

of static analysis.

Polyspace Specification

Polyspace does not raise a warning on assembly language code encapsulated in asm
functions or in asm pragmas.

Message in Report

Assembly language shall be encapsulated and isolated

Check Information
Group: Code Design
Category: Required

8 MISRA C 2012

8-10

AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Directive 4.5

8-11

MISRA C:2012 Directive 4.5
Identifiers in the same name space with overlapping visibility should be typographically
unambiguous

Description

Rule Definition

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

Rationale

What “unambiguous” means depends on the alphabet and language in which source
code is written. When you use identifiers that are typographically close, you can confuse
between them.

For the Latin alphabet as used in English words, at a minimum, the identifiers should
not differ by:

• The interchange of a lowercase letter with its uppercase equivalent.
• The presence or absence of the underscore character.
• The interchange of the letter O and the digit 0.
• The interchange of the letter I and the digit 1.
• The interchange of the letter I and the letter l.
• The interchange of the letter S and the digit 5.
• The interchange of the letter Z and the digit 2.
• The interchange of the letter n and the letter h.
• The interchange of the letter B and the digit 8.
• The interchange of the letters rn and the letter m.

Message in Report

Identifiers in the same name space with overlapping visibility should be typographically
unambiguous.

8 MISRA C 2012

8-12

Examples

Typographically Ambiguous Identifiers

void func(void) {

 int id1_numval;

 int id1_num_val; /* Non-compliant */

 int id2_numval;

 int id2_numVal; /* Non-compliant */

 int id3_lvalue;

 int id3_Ivalue; /* Non-compliant */

 int id4_xyz;

 int id4_xy2; /* Non-compliant */

 int id5_zerO;

 int id5_zer0; /* Non-compliant */

 int id6_rn;

 int id6_m; /* Non-compliant */

}

In this example, the rule is violated when identifiers that can be confused for each other
are used.

Check Information
Group: Code design
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Directive 4.5

8-13

Introduced in R2015b

8 MISRA C 2012

8-14

MISRA C:2012 Directive 4.6
typedefs that indicate size and signedness should be used in place of the basic
numerical types

Description

Rule Definition

typedefs that indicate size and signedness should be used in place of the basic
numerical types.

Rationale

When the amount of memory being allocated is important, using specific-length types
makes it clear how much storage is being reserved for each object.

Polyspace Specification

Polyspace does not issue a warning for the typedef definition.

Message in Report

typedefs that indicate size and signedness should be used in place of the basic numerical
types

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Directive 4.6

8-15

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-16

MISRA C:2012 Directive 4.9
A function should be used in preference to a function-like macro where they are
interchangeable

Description

Rule Definition

A function should be used in preference to a function-like macro where they are
interchangeable.

Rationale

In most circumstances, use functions instead of macros. Functions perform argument
type-checking and evaluate their arguments once, avoiding problems with potential
multiple side effects.

Polyspace Specification

Polyspace raises a warning on all function-like macro definitions.

Message in Report

A function should be used in preference to a function-like macro where they are
interchangeable

Check Information
Group: Code Design
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2 | MISRA C:2012 Rule 20.7

 MISRA C:2012 Directive 4.9

8-17

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-18

MISRA C:2012 Directive 4.10

Precautions shall be taken in order to prevent the contents of a header file being included
more than once

Description

Rule Definition

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Rationale

When a translation unit contains a complex hierarchy of nested header files, it is possible
for a particular header file to be included more than once. This situation can be a source
of confusion. If this multiple inclusion leads to multiple or conflicting definitions, then
your program can have undefined or erroneous behavior.

Polyspace Specification

Try to prevent multiple inclusions when a header file is formatted as:

#ifndef <control macro>

#define <control macro>

 contents

#endif

or

#ifdef <control macro>

#error ...

#else

#define <control macro>

 contents

#endif

Otherwise, Polyspace flags the inclusion as non-compliant.

 MISRA C:2012 Directive 4.10

8-19

Message in Report

Precautions shall be taken in order to prevent the contents of a header file being included
more than once.

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-20

MISRA C:2012 Directive 4.11
The validity of values passed to library functions shall be checked

Description

Rule Definition

The validity of values passed to library functions shall be checked.

Rationale

Many Standard C functions do not check the validity of parameters passed to them.
Even if checks are performed by a compiler, there is no guarantee that the checks are
adequate. For example, you should not pass negative numbers to sqrt or log.

Polyspace Specification

Polyspace raises a violation result for library function arguments if the following are all
true:

• Argument is a local variable.
• Local variable is not tested between last assignment and call to the library function.
• Corresponding parameter of the library function has a restricted input domain.
• Library function is one of the following common mathematical functions:

• sqrt

• tan

• pow

• log

• log10

• fmod

• acos

• asin

 MISRA C:2012 Directive 4.11

8-21

• acosh

• atanh

• or atan2

Message in Report

The validity of values passed to library functions shall be checked

Check Information
Group: Code Design
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-22

MISRA C:2012 Directive 4.13
Functions which are designed to provide operations on a resource should be called in an
appropriate sequence

Description

Rule Definition

Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Rationale

You typically use functions operating on a resource in the following way:

1 You allocate the resource.

For example, you open a file or critical section.
2 You use the resource.

For example, you read from the file or perform operations in the critical section.
3 You deallocate the resource.

For example, you close the file or critical section.

For your functions to operate as you expect, perform the steps in sequence. For instance,
if you call a resource allocation function on a certain execution path, you must call a
deallocation function on that path.

Polyspace Specification

Polyspace Bug Finder detects a violation of this rule if you specify multitasking options
and your code contains one of these defects:

• Missing lock: A task calls an unlock function before calling the corresponding lock
function.

 MISRA C:2012 Directive 4.13

8-23

• Missing unlock: A task calls a lock function but ends without a call to the
corresponding unlock function.

• Double lock: A task calls a lock function twice without an intermediate call to an
unlock function.

• Double unlock: A task calls an unlock function twice without an intermediate call to a
lock function.

For more information on the multitasking options, see “Multitasking”.

Message in Report

Functions which are designed to provide operations on a resource should be called in an
appropriate sequence.

Examples

Multitasking: Lock Function That Is Missing Unlock Function

typedef signed int int32_t;

typedef signed short int16_t;

typedef struct tag_mutex_t {

 int32_t value;

} mutex_t;

extern mutex_t mutex_lock (void);

extern void mutex_unlock (mutex_t m);

extern int16_t x;

void func(void);

void task1(void) {

 func();

}

void task2(void) {

 func();

}

8 MISRA C 2012

8-24

void func (void) {

 mutex_t m = mutex_lock (); /* Non-compliant */

 if (x > 0) {

 mutex_unlock (m);

 } else {

 /* Mutex not unlocked on this path */

 }

}

In this example, the rule is violated when:

• You specify that the functions mutex_lock and mutex_unlock are paired.

mutex_lock begins a critical section and mutex_unlock ends it.
• The function mutex_lock is called. However, if x <= 0, the function mutex_unlock

is not called.

To enable detection of this rule violation, you must specify these analysis options.

Option Specification

Configure multitasking
manually
Entry points task1

task2

Starting procedure Ending procedureCritical section details
mutex_lock mutex_unlock

For more information on the options, see:

• “Entry points (C/C++)”
• “Critical section details (C/C++)”

Check Information
Group: Code design
Category: Advisory
AGC Category: Advisory

 MISRA C:2012 Directive 4.13

8-25

Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

8 MISRA C 2012

8-26

MISRA C:2012 Rule 1.1
The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits

Description

Rule Definition

The program shall contain no violations of the standard C syntax and constraints, and
shall not exceed the implementation’s translation limits.

Polyspace Specification

Standard compilation error messages do not lead to a violation of this MISRA rule.

Message in Report

• Too many nesting levels of #includes: N1. The limit is N0.
• Integer constant is too large.
• ANSI C does not allow '#XX'.
• Text following preprocessing directive violates ANSI standard.
• Too many macro definitions: N1. The limit is N0.
• Array of zero size should not be used.
• Integer constant does not fit within long int.
• Integer constant does not fit within unsigned long int.
• Too many nesting levels for control flow: N1. The limit is N0.
• Assembly language should not be used.
• Too many enumeration constants: N1. The limit is N0.

Check Information
Group: Standard C Environment

 MISRA C:2012 Rule 1.1

8-27

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 1.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-28

MISRA C:2012 Rule 1.2
Language extensions should not be used

Description

Rule Definition

Language extensions should not be used.

Rationale

If a program uses language extensions, its portability is reduced. Even if you document
the language extensions, the documentation might not describe the behavior in all
circumstances.

Polyspace Specification

All the supported extensions lead to a violation of this MISRA rule.

Message in Report

• ANSI C90 forbids hexadecimal floating-point constants.
• ANSI C90 forbids universal character names.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids case ranges.
• ANSI C90/C99 forbids local label declaration.
• ANSI C90 forbids mixed declarations and code.
• ANSI C90/C99 forbids typeof operator.
• ANSI C90/C99 forbids casts to union.
• ANSI C90 forbids compound literals.
• ANSI C90/C99 forbids statements and declarations in expressions.
• ANSI C90 forbids __func__ predefined identifier.

 MISRA C:2012 Rule 1.2

8-29

• ANSI C90 forbids keyword '_Bool'.
• ANSI C90 forbids 'long long int' type.
• ANSI C90 forbids long long integer constants.
• ANSI C90 forbids 'long double' type.
• ANSI C90/C99 forbids 'short long int' type.
• ANSI C90 forbids _Pragma preprocessing operator.
• ANSI C90 does not allow macros with variable arguments list.
• ANSI C90 forbids designated initializer.

Keyword 'inline' should not be used.

Check Information
Group: Standard C Environment
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-30

MISRA C:2012 Rule 1.3
There shall be no occurrence of undefined or critical unspecified behaviour

Description

Rule Definition

There shall be no occurrence of undefined or critical unspecified behaviour.

Message in Report

There shall be no occurrence of undefined or critical unspecified behavior

• 'defined' without an identifier.
• macro 'XX' used with too few arguments.
• macro 'XX used with too many arguments.

Check Information
Group: Standard C Environment
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 1.3

8-31

Introduced in R2014b

8 MISRA C 2012

8-32

MISRA C:2012 Rule 2.1
A project shall not contain unreachable code

Description

Rule Definition

A project shall not contain unreachable code.

Rationale

Unless a program exhibits any undefined behavior, unreachable code cannot execute. The
unreachable code cannot affect the program output. The presence of unreachable code
can indicate an error in the program logic. Unreachable code that the compiler does not
remove wastes resources, for example:

• It occupies space in the target machine memory.
• Its presence can cause a compiler to select longer, slower jump instructions when

transferring control around the unreachable code.
• Within a loop, it can prevent the entire loop from residing in an instruction cache.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

A project shall not contain unreachable code.

Examples

Code Following return Statement

enum light { red, amber, red_amber, green };

 MISRA C:2012 Rule 2.1

8-33

enum light next_light (enum light color)

{

 enum light res;

 switch (color)

 {

 case red:

 res = red_amber;

 break;

 case red_amber:

 res = green;

 break;

 case green:

 res = amber;

 break;

 case amber:

 res = red;

 break;

 default:

 {

 error_handler ();

 break;

 }

 }

 res = color;

 return res;

 res = color; /* Non-compliant */

}

In this example, the rule is violated because there is an unreachable operation following
the return statement.

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

8 MISRA C 2012

8-34

See Also
MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 16.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 2.2

8-35

MISRA C:2012 Rule 2.2
There shall be no dead code

Description

Rule Definition

There shall be no dead code.

Rationale

The presence of dead code can indicate an error in the program logic. Because a compiler
can remove dead code, its presence can cause confusion for code reviewers.

Operations involving language extensions such as __asm ("NOP"); are not
considered dead code.

Polyspace Specification

Polyspace checks for useless writes during the Polyspace Code Prover verification.

Message in Report

There shall be no dead code.

Examples

Redundant Operations

extern volatile unsigned int v;

extern char *p;

void f (void) {

8 MISRA C 2012

8-36

 unsigned int x;

 (void) v; /* Compliant - Exception*/

 (int) v; /* Non-compliant */

 v >> 3; /* Non-compliant */

 x = 3; /* Non-compliant */

 p++; / Non-compliant */

 (*p)++; /* Compliant */

}

In this example, the rule is violated when an operation is performed on a variable, but
the result of that operation is not used. For instance,

• The operations (int) and >> on the variable v are redundant because the results are
not used.

• The operation = is redundant because the local variable x is not read after the
operation.

• The operation * on p++ is redundant because the result is not used.

The rule is not violated when:

• A variable is cast to void. The cast indicates that you are intentionally not using the
value.

• The result of an operation is used. For instance, the operation * on p is not redundant,
because *p is incremented.

Redundant Function Call

void g (void) {

 /* Compliant */

}

void h (void) {

 g(); /* Non-compliant */

}

In this example, g is an empty function. Though the function itself does not violate the
rule, a call to the function violates the rule.

 MISRA C:2012 Rule 2.2

8-37

Check Information
Group: Unused Code
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 17.7

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-38

MISRA C:2012 Rule 2.3
A project should not contain unused type declarations

Description

Rule Definition

A project should not contain unused type declarations.

Rationale

If a type is declared but not used, a reviewer does not know if the type is redundant or if
it is unused by mistake.

Message in Report

A project should not contain unused type declarations: type XX is not used.

Examples

Unused Local Type

signed short unusedType (void){

 typedef signed short myType; /* Non-compliant */

 return 67;

}

signed short usedType (void){

 typedef signed short myType; /* Compliant */

 myType tempVar = 67;

 return tempVar;

 MISRA C:2012 Rule 2.3

8-39

}

In this example, in function unusedType, the typedef statement defines a new local
type myType. However, this type is never used in the function. Therefore, the rule is
violated.

The rule is not violated in the function usedType because the new type myType is used.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-40

MISRA C:2012 Rule 2.4
A project should not contain unused tag declarations

Description

Rule Definition

A project should not contain unused tag declarations.

Rationale

If a tag is declared but not used, a reviewer does not know if the tag is redundant or if it
is unused by mistake.

Message in Report

A project should not contain unused tag declarations: tag tag_name is not used.

Examples

Tag Defined in Function but Not Used

void unusedTag (void)

{

 enum state1 { S_init, S_run, S_sleep }; /* Non-compliant */

}

void usedTag (void)

{

 enum state2 { S_init, S_run, S_sleep }; /* Compliant */

 enum state2 my_State = S_init;

}

In this example, in the function unusedTag, the tag state1 is defined but not used.
Therefore, the rule is violated.

 MISRA C:2012 Rule 2.4

8-41

Tag Used in typedef Only

typedef struct record_t /* Non-compliant */

{

 unsigned short key;

 unsigned short val;

} record1_t;

typedef struct /* Compliant */

{

 unsigned short key;

 unsigned short val;

} record2_t;

record1_t myRecord1_t;

record2_t myRecord2_t;

In this example, the tag record_t appears only in the typedef of record1_t. In the
rest of the translation unit, the type record1_t is used. Therefore, the rule is violated.

Check Information
Group: Unused Code
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-42

MISRA C:2012 Rule 2.5
A project should not contain unused macro declarations

Description

Rule Definition

A project should not contain unused macro declarations.

Rationale

If a macro is declared but not used, a reviewer does not know if the macro is redundant
or if it is unused by mistake.

Message in Report

A project should not contain unused macro declarations: macro macro_name is not used.

Examples

Unused Macro Definition

void use_macro (void)

{

 #define SIZE 4

 #define DATA 3

 use_int16(SIZE);

}

In this example, the macro DATA is never used in the use_macro function.

Check Information
Group: Unused Code

 MISRA C:2012 Rule 2.5

8-43

Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-44

MISRA C:2012 Rule 2.6
A function should not contain unused label declarations

Description

Rule Definition

A function should not contain unused label declarations.

Rationale

If you declare a label but do not use it, it is not clear to a reviewer of your code if the label
is redundant or unused by mistake.

Message in Report

A function should not contain unused label declarations.

Label label_name is not used.

Examples

Unused Label Declarations

void use_var(signed short);

void unused_label (void)

{

 signed short x = 6;

label1: /* Non-compliant - label1 not used */

 use_var (x);

}

void used_label (void)

 MISRA C:2012 Rule 2.6

8-45

{

 signed short x = 6;

 for (int i=0; i < 5; i++) {

 if (i==2) goto label1;

 }

label1: /* Compliant - label1 used */

 use_var (x);

}

In this example, the rule is violated when the label label1 in function unused_label is
not used.

Check Information
Group: Unused code
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

8 MISRA C 2012

8-46

MISRA C:2012 Rule 2.7
There should be no unused parameters in functions

Description

Rule Definition

There should be no unused parameters in functions.

Rationale

If a parameter is unused, it is possible that the implementation of the function does not
match its specifications. This rule can highlight such mismatches.

Message in Report

There should be no unused parameters in functions.

Parameter parameter_name is not used.

Examples

Unused Function Parameters

double func(int param1, int* param2) {

 return (param1/2.0);

}

In this example, the rule is violated because the parameter param2 is not used.

Check Information
Group: Unused code
Category: Advisory

 MISRA C:2012 Rule 2.7

8-47

AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

8 MISRA C 2012

8-48

MISRA C:2012 Rule 3.1
The character sequences /* and // shall not be used within a comment

Description

Rule Definition

The character sequences /* and // shall not be used within a comment.

Rationale

These character sequences are not allowed in code comments because:

• If your code contains a /* or a // in a /* */ comment, it typically means that you
have inadvertently commented out code.

• If your code contains a /* in a // comment, it typically means that you have
inadvertently uncommented a /* */ comment.

Polyspace Specification

You cannot annotate this rule in the source code.

For information on annotations, see “Add Review Comments to Code”.

Message in Report

The character sequence /* shall not appear within a comment.

Examples

/* Used in // Comments

int x;

int y;

 MISRA C:2012 Rule 3.1

8-49

int z;

void non_compliant_comments (void)

{

 x = y // /* Non-compliant

 + z

 // */

 ;

 z++; // Compliant with exception: // permitted within a // comment

}

void compliant_comments (void)

{

 x = y /* Compliant

 + z

 */

 ;

 z++; // Compliant with exception: // is permitted within a // comment

}

In this example, in the non_compliant_comments function, the /* character occurs in
what appears to be a // comment, violating the rule. Because of the comment structure,
the operation that takes place is x = y + z;. However, without the two //-s, an
entirely different operation x=y; takes place. It is not clear which operation is intended.

Use a comment format that makes your intention clear. For instance, in the
compliant_comments function, it is clear that the operation x=y; is intended.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

8 MISRA C 2012

8-50

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 3.2

8-51

MISRA C:2012 Rule 3.2
Line-splicing shall not be used in // comments

Description

Rule Definition

Line-splicing shall not be used in // comments.

Rationale

Line-splicing occurs when the \ character is immediately followed by a new-line
character. Line splicing is used for statements that span multiple lines.

If you use line-splicing in a // comment, the following line can become part of the
comment. In most cases, the \ is spurious and can cause unintentional commenting out
of code.

Message in Report

Line-splicing shall not be used in // comments.

Examples

Line Splicing in // Comment

#include <stdbool.h>

extern _Bool b;

void func (void)

{

 unsigned short x = 0; // Non-compliant - Line-splicing \

 if (b)

 {

8 MISRA C 2012

8-52

 ++b;

 }

}

Because of line-splicing, the statement if (b) is a part of the previous // comment.
Therefore, the statement b++ always executes, making the if block redundant.

Check Information
Group: Comments
Category: Required
AGC Category: Required
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Software Quality Objective Subsets (C:2012)”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.1

8-53

MISRA C:2012 Rule 4.1
Octal and hexadecimal escape sequences shall be terminated

Description

Rule Definition

Octal and hexadecimal escape sequences shall be terminated.

Rationale

There is potential for confusion if an octal or hexadecimal escape sequence is followed
by other characters. For example, the character constant '\x1f' consists of a single
character, whereas the character constant '\x1g' consists of the two characters '\x1'
and 'g'. The manner in which multi-character constants are represented as integers is
implementation-defined.

If every octal or hexadecimal escape sequence in a character constant or string literal is
terminated, you reduce potential confusion.

Message in Report

Octal and hexadecimal escape sequences shall be terminated.

Examples

Compliant and Noncompliant Escape Sequences

const char *s1 = "\x41g"; /* Non-compliant */

const char *s2 = "\x41" "g"; /* Compliant - Terminated by end of literal */

const char *s3 = "\x41\x67"; /* Compliant - Terminated by another escape sequence*/

int c1 = '\141t'; /* Non-compliant */

int c2 = '\141\t'; /* Compliant - Terminated by another escape sequence*/

8 MISRA C 2012

8-54

In this example, the rule is violated when an escape sequence is not terminated with the
end of string literal or another escape sequence.

Check Information
Group: Character Sets and Lexical Conventions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 4.2

8-55

MISRA C:2012 Rule 4.2

Trigraphs should not be used

Description

Rule Definition

Trigraphs should not be used.

Rationale

You denote trigraphs with two question marks followed by a specific third character (for
instance,'??-' represents a '~' (tilde) character and '??)' represents a ']'). These
trigraphs can cause accidental confusion with other uses of two question marks.

Note: Digraphs (<: :>, <% %>, %:, %:%:) are permitted because they are tokens.

Polyspace Specification

The Polyspace analysis converts trigraphs to the equivalent character for the run-time
verification. However, Polyspace also raises a MISRA violation.

Message in Report

Trigraphs should not be used.

Check Information
Group: Character Sets and Lexical Conventions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

8 MISRA C 2012

8-56

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.1

8-57

MISRA C:2012 Rule 5.1

External identifiers shall be distinct

Description

Rule Definition

External identifiers shall be distinct.

Rationale

External identifiers are ones declared with global scope or storage class extern.

Polyspace considers two names as distinct if there is a difference between their first
31 characters. If the difference between two names occurs only beyond the first 31
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 6 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

External %s %s conflicts with the external identifier XX in file YY.

Examples

C90: First Six Characters of Identifiers Not Unique

int engine_temperature_raw;

int engine_temperature_scaled; /* Non-compliant */

int engin2_temperature; /* Compliant */

In this example, the identifier engine_temperature_scaled has the same first six
characters as a previous identifier, engine_temperature_raw.

8 MISRA C 2012

8-58

C99: First 31 Characters of Identifiers Not Unique

int engine_exhaust_gas_temperature_raw;

int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

int eng_exhaust_gas_temp_raw;

int eng_exhaust_gas_temp_scaled; /* Compliant */

In this example, the identifier engine_exhaust_gas_temperature_scaled
has the same first 31 characters as a previous identifier,
engine_exhaust_gas_temperature_raw.

C90: First Six Characters Identifiers in Different Translation Units Differ in
Case Alone

/* file1.c */

int abc = 0;

/* file2.c */

int ABC = 0; /* Non-compliant */

In this example, the implementation supports 6 significant case-insensitive characters
in external identifiers. The identifiers in the two translation are different but are not
distinct in their significant characters.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4 | MISRA C:2012 Rule 5.5

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 5.1

8-59

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-60

MISRA C:2012 Rule 5.2
Identifiers declared in the same scope and name space shall be distinct

Description

Rule Definition

Identifiers declared in the same scope and name space shall be distinct.

Rationale

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Identifier XX has same significant characters as identifier YY.

Examples

C90: First 31 Characters of Identifiers Not Unique

extern int engine_exhaust_gas_temperature_raw;

static int engine_exhaust_gas_temperature_scaled; /* Non-compliant */

extern double engine_exhaust_gas_temperature_raw;

static double engine_exhaust_gas_temperature2_scaled; /* Compliant */

void func (void)

{

 /* Not in the same scope */

 int engine_exhaust_gas_temperature_local; /* Compliant */

}

 MISRA C:2012 Rule 5.2

8-61

In this example, the identifier engine_exhaust_gas_temperature_scaled has the
same 31 characters as a previous identifier, engine_exhaust_gas_temperature_raw.

The rule does not apply if the two identifiers have the same 31 characters but have
different scopes. For instance, engine_exhaust_gas_temperature_local has the
same 31 characters as engine_exhaust_gas_temperature_raw but different scope.

C99: First 63 Characters of Identifiers Not Unique

extern int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw;

static int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale;

 /* Non-compliant */

extern int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__raw;

static int engine_gas_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx__scale;

 /* Compliant */

void func (void)

{

/* Not in the same scope */

 int engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_local;

 /* Compliant */

}

In this example, the identifier
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_scale

has the same 63 characters as a previous identifier,
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_x_raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.3 | MISRA C:2012 Rule 5.4 | MISRA
C:2012 Rule 5.5

8 MISRA C 2012

8-62

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.3

8-63

MISRA C:2012 Rule 5.3
An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope

Description

Rule Definition

An identifier declared in an inner scope shall not hide an identifier declared in an outer
scope.

Rationale

If two identifiers have the same name but different scope, the identifier in the inner
scope hides the identifier in the outer scope. All uses of the identifier name refers to the
identifier in the inner scope. This behavior forces the developer to keep track of the scope
and reduces code readability.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Variable XX hides variable XX (FILE line LINE column COLUMN).

Examples

Local Variable Hidden by Another Local Variable in Inner Block

typedef signed short int16_t;

8 MISRA C 2012

8-64

void func(void)

{

 int16_t i;

 {

 int16_t i; /* Non-compliant */

 i = 3;

 }

}

In this example, the identifier i defined in the inner block in func hides the identifier i
with function scope.

It is not immediately clear to a reader which i is referred to in the statement i=3.

Global Variable Hidden by Function Parameter

typedef signed short int16_t;

struct astruct

{

 int16_t m;

};

extern void g (struct astruct *p);

int16_t xyz = 0;

void func (struct astruct xyz) /* Non-compliant */

{

 g (&xyz);

}

In this example, the parameter xyz of function func hides the global variable xyz.

It is not immediately clear to a reader which xyz is referred to in the statement g
(&xyz).

Check Information
Group: Identifiers
Category: Required
AGC Category: Advisory
Language: C90, C99

 MISRA C:2012 Rule 5.3

8-65

See Also
MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.8

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-66

MISRA C:2012 Rule 5.4
Macro identifiers shall be distinct

Description

Rule Definition

Macro identifiers shall be distinct.

Rationale

The names of macro identifiers must be distinct from both other macro identifiers and
their parameters.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

• Macro identifiers shall be distinct. Macro XX has same significant characters as
macro YY.

• Macro identifiers shall be distinct. Macro parameter XX has same significant
characters as macro parameter YY in macro ZZ.

Examples

C90: First 31 Characters of Macro Names Not Unique

#define engine_exhaust_gas_temperature_raw egt_r

#define engine_exhaust_gas_temperature_scaled egt_s /* Non-compliant */

 MISRA C:2012 Rule 5.4

8-67

#define engine_exhaust_gas_temp_raw egt_r

#define engine_exhaust_gas_temp_scaled egt_s /* Compliant */

In this example, the macro engine_exhaust_gas_temperature_scaled
egt_s has the same first 31 characters as a previous macro
engine_exhaust_gas_temperature_scaled.

C99: First 63 Characters of Macro Names Not Unique

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r

#define engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw_scaled egt_s

 /* Non-compliant */

/* 63 significant case-sensitive characters in macro identifiers */

#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_raw egt_r

#define new_engine_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_scaled egt_s

 /* Compliant */

In this example, the macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___gaz_scaled

has the same first 63 characters as a previous macro
engine_xxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx_xxxxxxxxx___raw.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.5

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-68

Introduced in R2014b

 MISRA C:2012 Rule 5.5

8-69

MISRA C:2012 Rule 5.5
Identifiers shall be distinct from macro names

Description

Rule Definition

Identifiers shall be distinct from macro names.

Rationale

The rule requires that macro names that exist only prior to processing must be different
from identifier names that also exist after preprocessing. Keeping macro names and
identifiers distinct help avoid confusion.

Polyspace considers two names as distinct if there is a difference between their first
63 characters. If the difference between two names occurs only beyond the first 63
characters, they can be easily mistaken for each other. The readability of the code is
reduced. For C90, the difference must occur between the first 31 characters. To use the
C90 rules checking, use the command-line option -no-language-extensions.

Message in Report

Identifier XX has same significant characters as macro YY.

Examples

Macro Names Same as Identifier Names

#define Sum_1(x, y) ((x) + (y))

short Sum_1; /* Non-compliant */

#define Sum_2(x, y) ((x) + (y))

short x = Sum_2 (1, 2); /* Compliant */

8 MISRA C 2012

8-70

In this example, Sum_1 is both the name of an identifier and a macro. Sum_2 is used only
as a macro.

C90: First 31 Characters of Macro Name Same as Identifier Name

#define low_pressure_turbine_temperature_1 lp_tb_temp_1

static int low_pressure_turbine_temperature_2; /* Non-compliant */

In this example, the identifier low_pressure_turbine_temperature_2 has the same
first 31 characters as a previous macro low_pressure_turbine_temperature_1.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.1 | MISRA C:2012 Rule 5.2 | MISRA C:2012 Rule 5.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 5.6

8-71

MISRA C:2012 Rule 5.6
A typedef name shall be a unique identifier

Description

Rule Definition

A typedef name shall be a unique identifier.

Rationale

Reusing a typedef name as another typedef or as the name of a function, object or
enum constant can cause developer confusion.

Message in Report

XX conflicts with the typedef name YY.

Examples

typedef Names Reused

void func (void){

 {

 typedef unsigned char u8_t;

 }

 {

 typedef unsigned char u8_t; /* Non-compliant */

 }

}

typedef float mass;

void func1 (void){

 float mass = 0.0f; /* Non-compliant */

}

8 MISRA C 2012

8-72

In this example, the typedef name u8_t is used twice. The typedef name mass is also
used as an identifier name.

typedef Name Same as Structure Name

typedef struct list{ /* Compliant - exception */

 struct list *next;

 unsigned short element;

} list;

typedef struct{

 struct chain{ /* Non-compliant */

 struct chain *list2;

 unsigned short element;

 } s1;

 unsigned short length;

} chain;

In this example, the typedef name list is the same as the original name of the struct
type. The rule allows this exceptional case.

However, the typedef name chain is not the same as the original name of the struct
type. The name chain is associated with a different struct type. Therefore, it clashes
with the typedef name.

Check Information
Group: Identifiers
Category:
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.7

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

 MISRA C:2012 Rule 5.6

8-73

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-74

MISRA C:2012 Rule 5.7
A tag name shall be a unique identifier

Description

Rule Definition

A tag name shall be a unique identifier.

Rationale

Reusing a tag name can cause developer confusion.

Message in Report

XX conflicts with the tag name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.7

8-75

Introduced in R2014b

8 MISRA C 2012

8-76

MISRA C:2012 Rule 5.8
Identifiers that define objects or functions with external linkage shall be unique

Description

Rule Definition

Identifiers that define objects or functions with external linkage shall be unique.

Rationale

External identifiers are those declared with global scope or with storage class extern.
Reusing an external identifier name can cause developer confusion.

Identifiers defined within a function have smaller scope. Even if names of such
identifiers are not unique, they are not likely to cause confusion.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 5.3

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 5.8

8-77

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-78

MISRA C:2012 Rule 5.9
Identifiers that define objects or functions with internal linkage should be unique

Description

Rule Definition

Identifiers that define objects or functions with internal linkage should be unique.

Polyspace Specification

This rule checker assumes that rule 5.8 is not violated.

Message in Report

• Object XX conflicts with the object name YY.
• Function XX conflicts with the function name YY.

Check Information
Group: Identifiers
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 8.10

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 5.9

8-79

Introduced in R2014b

8 MISRA C 2012

8-80

MISRA C:2012 Rule 6.1
Bit-fields shall only be declared with an appropriate type

Description

Rule Definition

Bit-fields shall only be declared with an appropriate type.

Rationale

Using int is implementation-defined because bit-fields of type int can be either signed
or unsigned.

The use of enum, short char, or any other type of bit-field is not permitted in C90
because the behavior is undefined.

In C99, the implementation can potentially define other integer types that are permitted
in bit-field declarations.

Message in Report

Bit-fields shall only be declared with an appropriate type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 6.1

8-81

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-82

MISRA C:2012 Rule 6.2
Single-bit named bit fields shall not be of a signed type

Description

Rule Definition

Single-bit named bit fields shall not be of a signed type.

Rationale

According to the C99 Standard Section 6.2.6.2, a single-bit signed bit-field has one sign
bit and no value bits. In any representation of integers, zero value bits cannot specify a
meaningful value.

A single-bit signed bit-field is therefore unlikely to behave in a useful way. Its presence is
likely to indicate programmer confusion.

Although the C90 Standard does not provide much detail regarding the representation of
types, the same single-bit bit-field considerations apply.

Polyspace Specification

This rule does not apply to unnamed bit fields because their values cannot be accessed.

Message in Report

Single-bit named bit fields shall not be of a signed type.

Check Information
Group: Types
Category: Required
AGC Category: Required
Language: C90, C99

 MISRA C:2012 Rule 6.2

8-83

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-84

MISRA C:2012 Rule 7.1
Octal constants shall not be used

Description

Rule Definition

Octal constants shall not be used.

Rationale

Octal constants are denoted by a leading zero. Developers can mistake an octal constant
as a decimal constant with a redundant leading zero.

Message in Report

Octal constants shall not be used.

Examples

Use of octal constants

#define CST 021

#define VALUE 010 /* Compliant - constant not used */

#if 010 == 01 /* Non-Compliant - constant used */

#define CST 021 /* Compliant - constant not used */

#endif

extern short code[5];

static char* str2 = "abcd\0efg"; /* Compliant */

void main(void) {

 int value1 = 0; /* Compliant */

 int value2 = 01; /* Non-Compliant - decimal 01 */

 int value3 = 1; /* Compliant */

 MISRA C:2012 Rule 7.1

8-85

 int value4 = '\109'; /* Compliant */

 code[1] = 109; /* Compliant - decimal 109 */

 code[2] = 100; /* Compliant - decimal 100 */

 code[3] = 052; /* Non-Compliant - decimal 42 */

 code[4] = 071; /* Non-Compliant - decimal 57 */

 if (value1 != CST) { /* Non-Compliant - decimal 17 */

 value1 = !(value1 != 0); /* Compliant */

 }

}

In this example, the rule is not violated when octal constants are used to define macros
CST and VALUE. The rule is violated only when the macros are used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-86

MISRA C:2012 Rule 7.2
A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type

Description

Rule Definition

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Rationale

The signedness of a constant is determined from:

• Value of the constant.
• Base of the constant: octal, decimal or hexadecimal.
• Size of the various types.
• Any suffixes used.

Unless you use a suffix u or U, another developer looking at your code cannot determine
easily whether a constant is signed or unsigned.

Message in Report

A “u” or “U” suffix shall be applied to all integer constants that are represented in an
unsigned type.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

 MISRA C:2012 Rule 7.2

8-87

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-88

MISRA C:2012 Rule 7.3
The lowercase character “l” shall not be used in a literal suffix

Description

Rule Definition

The lowercase character “l” shall not be used in a literal suffix.

Rationale

The lowercase character “l” can be confused with the digit “1”. Use the uppercase “L”
instead.

Message in Report

The lowercase character “l” shall not be used in a literal suffix.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 7.4

8-89

MISRA C:2012 Rule 7.4
A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char

Description

Rule Definition

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Rationale

This rule prevents assignments that allow modification of a string literal.

An attempt to modify a string literal can result in undefined behavior. For example, some
implementations can store string literals in read-only memory. An attempt to modify the
string literal can result in an exception or crash.

Message in Report

A string literal shall not be assigned to an object unless the object’s type is “pointer to
const-qualified char”.

Examples

Incorrect Assignment of String Literal

char *str1 = "AccountHolderName";

const char *str2 = "AccountHolderName";

void checkAccount1(char*); /* Non-Compliant */

void checkAccount2(const char*); /* Compliant */

void main() {

8 MISRA C 2012

8-90

 checkAccount1("AccountHolderName"); /* Non-Compliant */

 checkAccount2("AccountHolderName"); /* Compliant */

}

In this example, the rule is not violated when string literals are assigned to const
char* pointers, either directly or through copy of function arguments. The rule is
violated only when the const qualifier is not used.

Check Information
Group: Literals and Constants
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.8

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.1

8-91

MISRA C:2012 Rule 8.1
Types shall be explicitly specified

Description

Rule Definition

Types shall be explicitly specified.

Rationale

The C90 standard permits types to be omitted in some circumstances, in which case the
int type is implicitly specified. Examples of potential circumstances in which you can
use an implicit int are:

• Object declarations
• Parameter declarations
• Member declarations
• typedef declarations
• Function return types

The omission of an explicit type can lead to confusion. For example, in the declaration
extern void foo (char c, const k);, the type of k is const int, but const
char might have been expected.

Message in Report

Types shall be explicitly specified.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required

8 MISRA C 2012

8-92

Language: C90

See Also
MISRA C:2012 Rule 8.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.2

8-93

MISRA C:2012 Rule 8.2

Function types shall be in prototype form with named parameters

Description

Rule Definition

Function types shall be in prototype form with named parameters.

Rationale

The mismatch between the number of arguments and parameters, their types, and the
expected and actual return type of a function provides potential for undefined behavior.
This rule also requires that you specify names for all the parameters in a declaration.
The parameter names provide useful information regarding the function interface. A
mismatch between a declaration and definition can indicate a programming error.

Polyspace Specification

Polyspace also checks the function definition.

Message in Report

• Too many arguments to function_name.
• Too few arguments to function_name.
• Function types shall be in prototype form with named parameters.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

8 MISRA C 2012

8-94

See Also
MISRA C:2012 Rule 8.1 | MISRA C:2012 Rule 8.4 | MISRA C:2012 Rule 17.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.3

8-95

MISRA C:2012 Rule 8.3
All declarations of an object or function shall use the same names and type qualifiers

Description

Rule Definition

All declarations of an object or function shall use the same names and type qualifiers.

Rationale

Consistently using types and qualifiers across declarations of the same object or function
encourages stronger typing. By specifying parameter names in function prototypes,
Polyspace can check for interface consistency between the function definition and
declarations.

Polyspace Specification

Polyspace generates some violations of this rule during the link phase.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Definition of function function_name incompatible with its declaration.
• Global declaration of function_name function has incompatible type with its

definition.
• Global declaration of variable_name variable has incompatible type with its

definition.
• All declarations of an object or function shall use the same names and type qualifiers.

Check Information
Group: Declarations and Definitions

8 MISRA C 2012

8-96

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.4

8-97

MISRA C:2012 Rule 8.4
A compatible declaration shall be visible when an object or function with external linkage
is defined

Description

Rule Definition

A compatible declaration shall be visible when an object or function with external linkage
is defined.

Rationale

If a declaration for an object or function is visible when the object or function is defined,
a compiler must check that the declaration and definition are compatible. In the presence
of function prototypes, as required by rule 8.2, checking extends to the number and
type of function parameters. A better way of implementing declarations of objects and
functions with external linkage is to declare them in a header file. Then include the
header file in all those code files that require them, including the one that defines them.

Message in Report

• Global definition of variable_name variable has no previous declaration.
• Function function_name has no visible compatible prototype at definition.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.3 | MISRA C:2012 Rule 8.5 | MISRA
C:2012 Rule 17.3

8 MISRA C 2012

8-98

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.5

8-99

MISRA C:2012 Rule 8.5

An external object or function shall be declared once in one and only one file

Description

Rule Definition

An external object or function shall be declared once in one and only one file.

Rationale

Typically, a single declaration is made in a header file that you include in any translation
unit in which the identifier is defined or used. This inclusion ensures consistency
between:

• The declaration and the definition
• The declarations in different translation units

Note: It is possible to have many header files in a project, but each external object or
function is declared in only one header file.

Polyspace Specification

Polyspace checks only explicit extern declarations (tentative definitions are ignored).

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Object object_name has external declarations in multiples files.
• Function function_name has external declarations in multiples files.

8 MISRA C 2012

8-100

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 8.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.6

8-101

MISRA C:2012 Rule 8.6

An identifier with external linkage shall have exactly one external definition

Description

Rule Definition

An identifier with external linkage shall have exactly one external definition.

Rationale

The behavior is undefined if you use an identifier for which multiple definitions exist
(in different files) or no definition exists. Multiple definitions in different files are
not permitted by this rule even if the definitions are the same. If the declarations are
different, or initialize the identifier to different values, it is undefined behavior.

Polyspace Specification

Polyspace considers tentative definitions as definitions, but does not raise warnings on
predefined symbols.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Forbidden multiple definitions for function function_name.
• Forbidden multiple tentative of definition for object object_name.
• Global variable variable_name multiply defined.
• Function function_name multiply defined.
• Global variable has multiple tentative of definitions.
• Undefined global variable variable_name.

8 MISRA C 2012

8-102

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.7

8-103

MISRA C:2012 Rule 8.7
Functions and objects should not be defined with external linkage if they are referenced
in only one translation unit

Description

Rule Definition

Functions and objects should not be defined with external linkage if they are referenced in
only one translation unit.

Rationale

Restricting or reducing the visibility of an object by giving it internal linkage or no
linkage reduces the chance that it is accessed inadvertently. Compliance with this rule
also avoids any possibility of confusion between your identifier and an identical identifier
in another translation unit or a library.

Polyspace Specification

If your program does not use the externally defined function or object, Polyspace does not
raise a warning.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

• Variable variable_name should have internal linkage.
• Function function_name should have internal linkage.

Check Information
Group: Declarations and Definitions
Category: Advisory

8 MISRA C 2012

8-104

AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.8

8-105

MISRA C:2012 Rule 8.8
The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage

Description

Rule Definition

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Rationale

If you have an object or function declared with extern, and another declaration of the
object or function is already visible, the linkage can be confusing. You expect that the
extern storage class specifier creates external linkage. Apply the static storage class
specifier to objects and functions with internal linking.

Message in Report

The static storage class specifier shall be used in all declarations of objects and functions
that have internal linkage.

Examples

Internal and External Linkage Conflicts

static int foo = 0;

extern int foo; /* Non-compliant */

extern int hhh;

static int hhh; /* Non-compliant */

In this example, the first line defines foo with internal linkage. Because the example
uses the static keyword, the first line is compliant. However, the second line does

8 MISRA C 2012

8-106

not use static in the declaration, so the declaration is noncompliant. By comparison,
the third line declares hhh with an extern keyword creating external linkage. The
fourth line declares hhh with internal linkage, but this declaration conflicts with the first
declaration of hhh.

Correction — Consistent static and extern Use

One possible correction is to use static and extern consistently:

static int foo = 0;

static int foo;

extern int hhh;

extern int hhh;

Internal linkage

static int fee(void); /* Compliant - declaration: internal linkage */

int fee(void){ /* Non-compliant */

 return 1;

}

static int ggg(void); /* Compliant - declaration: internal linkage */

extern int ggg(void){ /* Non-compliant */

 return 1 + x;

}

This example shows two internal linkage violations. Because fee and ggg have internal
linkage, you must use a static class specifier to be compliant with MISRA

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 8.8

8-107

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-108

MISRA C:2012 Rule 8.9
An object should be defined at block scope if its identifier only appears in a single
function

Description

Rule Definition

An object should be defined at block scope if its identifier only appears in a single
function.

Rationale

Defining an object at block scope reduces the possibility that you inadvertently access the
object . It ensures your program does not access the object elsewhere.

Polyspace Specification

Polyspace raises a warning only for static objects.

Message in Report

An object should be defined at block scope if its identifier only appears in a single
function.

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 8.9

8-109

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-110

MISRA C:2012 Rule 8.10
An inline function shall be declared with the static storage class

Description

Rule Definition

An inline function shall be declared with the static storage class.

Rationale

If you call an inline function with external linkage, you can call the external definition
of the function or the inline definition. This behavior can affect the execution time and
therefore impact your program.

Tip To make an inline function available to several translation units, place its definition
in a header file.

Message in Report

An inline function shall be declared with the static storage class.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 5.9

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 8.10

8-111

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-112

MISRA C:2012 Rule 8.11
When an array with external linkage is declared, its size should be explicitly specified

Description

Rule Definition

When an array with external linkage is declared, its size should be explicitly specified.

Rationale

Although it is possible to declare an array with incomplete type and access its elements,
it is safer to state the size of the array explicitly. Providing size information for each
declaration allows the software to check the declarations for consistency. It also allows a
static checker to perform array bounds analysis without analyzing more than one unit.

Message in Report

Size of array array_name should be explicitly stated. When an array with external
linkage is declared, its size should be explicitly specified.

Examples

Array Declarations

extern int32_t array1[10]; /* Compliant */

extern int32_t array2[]; /* Non-compliant */

In this example, two arrays are declared array1 and array2. array1 has external
linkage (the extern keyword) and a size of 10. array2 also has external linkage, but
no specified size. array2 is noncompliant because for arrays with external linkage, you
must explicitly specify a size.

Check Information
Group: Declarations and Definitions

 MISRA C:2012 Rule 8.11

8-113

Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-114

MISRA C:2012 Rule 8.12
Within an enumerator list, the value of an implicitly-specified enumeration constant
shall be unique

Description

Rule Definition

Within an enumerator list, the value of an implicitly-specified enumeration constant shall
be unique.

Rationale

An implicitly specified enumeration constant has a value 1 greater than its predecessor.
If the first enumeration constant is implicitly specified, then its value is 0. An explicitly
specified enumeration constant has the value of the associate constant expression.

If implicitly and explicitly specified constants are mixed within an enumeration list, it is
possible for your program to replicate values. Such replications can be unintentional and
can cause unexpected behavior.

Message in Report

The constant constant1 has same value as the constant constant2.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 8.12

8-115

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-116

MISRA C:2012 Rule 8.13
A pointer should point to a const-qualified type whenever possible

Description

Rule Definition

A pointer should point to a const-qualified type whenever possible.

Rationale

This rule ensures that you do not inadvertently use pointers to modify objects.

Polyspace Specification

Polyspace issues a warning if a non-const pointer parameter either:

• Does not modify the addressed object.
• Is passed to a call of a function that is declared with a const pointer parameter.

Message in Report

A pointer should point to a const-qualified type whenever possible.

Examples

Pointer Parameters

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(uint16_t *p) { /* Non-compliant */

 return *p;

 MISRA C:2012 Rule 8.13

8-117

}

char last_char(char * const s){ /* Non-compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(uint16_t a[5]){ /* Non-compliant */

 return a[0];

}

This example shows three different noncompliant pointer parameters. In the ptr_ex
function, p does not modify an object. However, the type to which p points is not const-
qualified, so it is noncompliant. In last_char, the pointer s is const-qualified but
the type it points to is not. Because s does not modify an object, this parameter is
noncompliant. The function first does not modify the elements of the array a. However,
the element type is not const-qualified, so a is also noncompliant.

Correction — Use const Keywords

One possible correction is to add const qualifiers to the definitions.

#include <string.h>

typedef unsigned short uint16_t;

uint16_t ptr_ex(const uint16_t *p){ /* Compliant */

 return *p;

}

char last_char(const char * const s){ /* Compliant */

 return s[strlen(s) - 1u];

}

uint16_t first(const uint16_t a[5]) { /* Compliant */

 return a[0];

}

Check Information
Group: Declarations and Definitions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

8 MISRA C 2012

8-118

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 8.14

8-119

MISRA C:2012 Rule 8.14
The restrict type qualifier shall not be used

Description

Rule Definition

The restrict type qualifier shall not be used.

Rationale

When you use a restrict qualifier carefully, it improves the efficiency of code generated
by a compiler. It can also improve static analysis. However, when using the restrict
qualifier, make sure that the memory areas operated on by two or more pointers do not
overlap.

Message in Report

The restrict type qualifier shall not be used.

Check Information
Group: Declarations and Definitions
Category: Required
AGC Category: Advisory
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-120

MISRA C:2012 Rule 9.1
The value of an object with automatic storage duration shall not be read before it has
been set

Description

Message in Report:

Rule Definition

The value of an object with automatic storage duration shall not be read before it has been
set.

Rationale

A variable with an automatic storage duration is allocated memory at the beginning of
an enclosing code block and deallocated at the end. All non-global variables have this
storage duration, except those declared static or extern.

Variables with automatic storage duration are not automatically initialized and have
indeterminate values. Therefore, you must not read such a variable before you have set
its value through a write operation.

Polyspace Specification

The Polyspace analysis checks some of the violations as non-initialized variables. For
more information, see Non-initialized local variable.

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Message in Report

The value of an object with automatic storage duration shall not be read before it has
been set.

 MISRA C:2012 Rule 9.1

8-121

Check Information
Group: Initialization
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-122

MISRA C:2012 Rule 9.2
The initializer for an aggregate or union shall be enclosed in braces

Description

Rule Definition

The initializer for an aggregate or union shall be enclosed in braces.

Rationale

The rule applies to both objects and subobjects. For example, when initializing a
structure that contains an array, the values assigned to the structure must be enclosed in
braces. Within these braces, the values assigned to the array must be enclosed in another
pair of braces.

Enclosing initializers in braces improves clarity of code that contains complex data
structures such as multidimensional arrays and arrays of structures.

Tip To avoid nested braces for subobjects, use the syntax {0}, which sets all values to
zero.

Message in Report

The initializer for an aggregate or union shall be enclosed in braces.

Examples

Initialization of Two-dimensional Arrays

void initialize(void) {

 int x[4][2] = {{0,0},{1,0},{0,1},{1,1}}; /* Compliant */

 int y[4][2] = {{0},{1,0},{0,1},{1,1}}; /* Compliant */

 MISRA C:2012 Rule 9.2

8-123

 int z[4][2] = {0}; /* Compliant */

 int w[4][2] = {0,0,1,0,0,1,1,1}; /* Non-compliant */

}

In this example, the rule is not violated when:

• Initializers for each row of the array are enclosed in braces.
• The syntax {0} initializes all elements to zero.

The rule is violated when a separate pair of braces is not used to enclose the initializers
for each row.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-124

MISRA C:2012 Rule 9.3
Arrays shall not be partially initialized

Description

Rule Definition

Arrays shall not be partially initialized.

Rationale

Providing an explicit initialization for each array element makes it clear that every
element has been considered.

Message in Report

Arrays shall not be partially initialized.

Examples

Partial and Complete Initializations

void func(void) {

 int x[3] = {0,1,2}; /* Compliant */

 int y[3] = {0,1}; /* Non-compliant */

 int z[3] = {0}; /* Compliant - exception */

 int a[30] = {[1] = 1,[15]=1}; /* Compliant - exception */

 int b[30] = {{1} = 1, 1}; /* Non-compliant */

 char c[20] = "Hello World"; /* Compliant - exception */

}

In this example, the rule is not violated when each array element is explicitly initialized.

The rule is violated when some elements of the array are implicitly initialized.
Exceptions include the following:

 MISRA C:2012 Rule 9.3

8-125

• The initializer has the form {0}, which initializes all elements to zero.
• The array initializer consists only of designated initializers. Typically, you use this

approach for sparse initialization.
• The array is initialized using a string literal.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-126

MISRA C:2012 Rule 9.4

An element of an object shall not be initialized more than once

Description

Rule Definition

An element of an object shall not be initialized more than once.

Rationale

Designated initializers allow explicitly initializing elements of an objects such as arrays
in any order. However, using designated initializers, one can inadvertently initialize the
same element twice and therefore overwrite the first initialization.

Message in Report

An element of an object shall not be initialized more than once.

Examples

Array Initialization Using Designated Initializers

void func(void) {

 int a[5] = {-2,-1,0,1,2}; /* Compliant */

 int b[5] = {[0]=-2, [1]=-1, [2]=0, [3]=1, [4]=2};

 /* Compliant */

 int c[5] = {[0]=-2, [1]=-1, [1]=0, [3]=1, [4]=2};

 /* Non-compliant */

}

In this example, the rule is violated when the array element c[1] is initialized twice
using a designated initializer.

 MISRA C:2012 Rule 9.4

8-127

Structure Initialization Using Designated Initializers

struct myStruct {

 int a;

 int b;

 int c;

 int d;

};

void func(void) {

 struct myStruct struct1 = {-4,-2,2,4}; /* Compliant */

 struct myStruct struct2 = {.a=-4, .b=-2, .c=2, .d=4};

 /* Compliant */

 struct myStruct struct3 = {.a=-4, .b=-2, .b=2, .d=4};

 /* Non-compliant */

}

In this example, the rule is violated when struct3.b is initialized twice using a
designated initializer.

Check Information
Group: Initialization
Category: Required
AGC Category: Required
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-128

MISRA C:2012 Rule 9.5
Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly

Description

Rule Definition

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Rationale

If the size of an array is not specified explicitly, it is determined by the highest index of
the elements that are initialized. When using long designated initializers, it might not be
immediately apparent which element has the highest index.

Message in Report

Where designated initializers are used to initialize an array object the size of the array
shall be specified explicitly.

Examples

Using Designated Initializers Without Specifying Array Size

int a[5] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Compliant */

int b[] = {[0]= 1, [2] = 1, [4]= 1, [1] = 1}; /* Non-compliant */

int c[] = {[0]= 1, [1] = 1, [2]= 1, [3]=0, [4] = 1}; /* Non-compliant */

void display(int);

void main() {

 func(a,5);

 func(b,5);

 MISRA C:2012 Rule 9.5

8-129

 func(c,5);

}

void func(int* arr, int size) {

 for(int i=0; i<size; i++)

 display(arr[i]);

}

In this example, the rule is violated when the arrays b and c are initialized using
designated initializers but the array size is not specified.

Check Information
Group: Initialization
Category: Required
AGC Category: Readability
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-130

MISRA C:2012 Rule 10.1

Operands shall not be of an inappropriate essential type

Description

Rule Definition

Operands shall not be of an inappropriate essential type.

Rationale

What Are Essential Types?

An essential type category defines the essential type of an object or expression.

Essential type category Standard types

Essentially Boolean bool or _Bool (defined in stdbool.h)

If you define a boolean type through a typedef, you must
specify this type name before coding rules checking. For
more information, see “Specify Effective Boolean Types”.

Essentially character char

Essentially enum named enum
Essentially signed signed char, signed short, signed int, signed long,

signed long long
Essentially unsigned unsigned char, unsigned short, unsigned int, unsigned

long, unsigned long long
Essentially floating float, double, long double

Amplification and Rationale

For operands of some operators, you cannot use certain essential types. In the table
below, each row represents an operator/operand combination. If the essential type

 MISRA C:2012 Rule 10.1

8-131

column is not empty for that row, there is a MISRA restriction when using that type as
the operand. The number in the table corresponds to the rationale list after the table.

Operation Essential type category of arithmetic operand

Operator Operand Boolean character enum signed unsigned floating
[] integer 3 4 1

+ (unary) 3 4 5
- (unary) 3 4 5 8

+ - either 3 5
* / either 3 4 5
% either 3 4 5 1

< > <= >= either 3
== != either
! && || any 2 2 2 2 2
<< >> left 3 4 5,6 6 1
<< >> right 3 4 7 7 1
~ & | ^ any 3 4 5,6 6 1

?: 1st 2 2 2 2 2
?: 2nd and 3rd

1 An expression of essentially floating type for these operands is a constraint violation.
2 When an operand is interpreted as a Boolean value, use an expression of essentially

Boolean type.
3 When an operand is interpreted as a numeric value, do not use an operand of

essentially Boolean type.
4 When an operand is interpreted as a numeric value, do not use an operand

of essentially character type. The numeric values of character data are
implementation-defined.

5 In an arithmetic operation, do not use an operand of essentially enum type. An enum
object uses an implementation-defined integer type. An operation involving an enum
object can therefore yield a result with an unexpected type.

8 MISRA C 2012

8-132

6 Perform only shift and bitwise operations on operands of essentially unsigned type.
When you use shift and bitwise operations on essentially signed types, the resulting
numeric value is implementation-defined.

7 To avoid undefined behavior on negative shifts, use an essentially unsigned right-
hand operand.

8 For the unary minus operator, do not use an operand of essentially unsigned type.
The implemented size of int determines the signedness of the result.

Message in Report

The operand_name operand of the operator_name operator is of an inappropriate
essential type category category_name.

Examples

Violation of Rule 10.1, Rationale 2: Inappropriate Operand Types for
Operators That Take Essentially Boolean Operands

typedef unsigned char boolean;

extern float f32a;

extern char cha;

extern signed char s8a;

extern unsigned char u8a;

enum enuma { a1, a2, a3 } ena;

extern boolean bla, blb, rbla;

void foo(void) {

 rbla = cha && bla; /* Non-compliant: cha is essentially char */

 enb = ena ? a1 : a2; /* Non-compliant: ena is essentially enum */

 rbla = s8a && bla; /* Non-compliant: s8a is essentially signed char */

 ena = u8a ? a1 : a2; /* Non-compliant: u8a is essentially unsigned char */

 rbla = f32a && bla; /* Non-compliant: f32a is essentially float */

 rbla = bla && blb; /* Compliant */

 ru8a = bla ? u8a : u8b; /* Compliant */

 MISRA C:2012 Rule 10.1

8-133

}

In the noncompliant examples, rule 10.1 is violated because:

• The operator && expects only essentially Boolean operands. However, at least one of
the operands used has a different type.

• The first operand of ?: is expected to be essentially Boolean. However, a different
operand type is used.

Note: For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Effective Boolean Types”.

Violation of Rule 10.1, Rationale 3: Inappropriate Boolean Operands

typedef unsigned char boolean;

enum enuma { a1, a2, a3 } ena;

enum { K1 = 1, K2 = 2 }; /* Essentially signed */

extern char cha, chb;

extern boolean bla, blb, rbla;

extern signed char rs8a, s8a;

void foo(void) {

 rbla = bla * blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla > blb; /* Non-compliant - Boolean used as a numeric value */

 rbla = bla && blb; /* Compliant */

 rbla = cha > chb; /* Compliant */

 rbla = ena > a1; /* Compliant */

 rbla = u8a > 0U; /* Compliant */

 rs8a = K1 * s8a; /* Compliant - K1 obtained from anonymous enum */

}

In the noncompliant examples, rule 10.1 is violated because the operators * and > do not
expect essentially Boolean operands. However, the operands used here are essentially
Boolean.

8 MISRA C 2012

8-134

Note: For Polyspace to detect the rule violation, you must define the type name boolean
as an effective Boolean type. For more information, see “Specify Effective Boolean Types”.

Violation of Rule 10.1, Rationale 4: Inappropriate Character Operands

extern char rcha, cha, chb;

extern unsigned char ru8a, u8a;

void foo(void) {

 rcha = cha & chb; /* Non-compliant - char type used as a numeric value */

 rcha = cha << 1; /* Non-compliant - char type used as a numeric value */

 ru8a = u8a & 2U; /* Compliant */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the operators & and << do
not expect essentially character operands. However, at least one of the operands used
here has essentially character type.

Violation of Rule 10.1, Rationale 5: Inappropriate Enum Operands

typedef unsigned char boolean;

enum enuma { a1, a2, a3 } rena, ena, enb;

void foo(void) {

 ena--; /* Non-Compliant - arithmetic operation with enum type*/

 rena = ena * a1; /* Non-Compliant - arithmetic operation with enum type*/

 ena += a1; /* Non-Compliant - arithmetic operation with enum type*/

}

In the noncompliant examples, rule 10.1 is violated because the arithmetic operators --,
* and += do not expect essentially enum operands. However, at least one of the operands
used here has essentially enum type.

 MISRA C:2012 Rule 10.1

8-135

Violation of Rule 10.1, Rationale 6: Inappropriate Signed Operand for
Bitwise Operations

extern signed char s8a;

extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = s8a & 2; /* Non-compliant - bitwise operation on signed type */

 ru8a = 2 << 3U; /* Non-compliant - shift operation on signed type */

 ru8a = u8a << 2U; /* Compliant */

}

In the noncompliant examples, rule 10.1 is violated because the & and << operations
must not be performed on essentially signed operands. However, the operands used here
are signed.

Violation of Rule 10.1, Rationale 7: Inappropriate Signed Right Operand
for Shift Operations

extern signed char s8a;

extern unsigned char ru8a, u8a;

void foo(void) {

 ru8a = u8a << s8a; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << -1; /* Non-compliant - shift magnitude uses signed type */

 ru8a = u8a << 2U; /* Compliant */

 ru8a = u8a << 1; /* Compliant - exception */

}

In the noncompliant examples, rule 10.1 is violated because the operation << does not
expect an essentially signed right operand. However, the right operands used here are
signed.

Check Information
Group: The Essential Type Model

8 MISRA C 2012

8-136

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.2

8-137

MISRA C:2012 Rule 10.2
Expressions of essentially character type shall not be used inappropriately in addition
and subtraction operations

Description

Rule Definition

Expressions of essentially character type shall not be used inappropriately in addition and
subtraction operations.

Rationale

Essentially character type expressions are char variables. Do not use character data
arithmetically because the data does not represent numeric values.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The operand_name operand of the + operator applied to an expression of essentially
character type shall have essentially signed or unsigned type.

• The right operand of the - operator applied to an expression of essentially character
type shall have essentially signed or unsigned or character type.

• The left operand of the - operator shall have essentially character type if the right
operand has essentially character type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.1

8 MISRA C 2012

8-138

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.3

8-139

MISRA C:2012 Rule 10.3
The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category

Description

Rule Definition

The value of an expression shall not be assigned to an object with a narrower essential
type or of a different essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The expression is assigned to an object with a different essential type category.
• The expression is assigned to an object with a narrower essential type.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.4 | MISRA C:2012 Rule 10.5 | MISRA C:2012 Rule 10.6

More About
• “Set Up Coding Rules Checking”

8 MISRA C 2012

8-140

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.4

8-141

MISRA C:2012 Rule 10.4
Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category

Description

Rule Definition

Both operands of an operator in which the usual arithmetic conversions are performed
shall have the same essential type category.

Rationale

The use of implicit conversions between types can lead to unintended results, including
possible loss of value, sign, or precision.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

Operands of operator_name operator shall have the same essential type category.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Set Up Coding Rules Checking”

8 MISRA C 2012

8-142

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.5

8-143

MISRA C:2012 Rule 10.5
The value of an expression should not be cast to an inappropriate essential type

Description

Rule Definition

The value of an expression should not be cast to an inappropriate essential type.

Rationale

Converting Between Variable Types

From
Boolean character enum signed unsigned floating

Boolean Avoid Avoid Avoid Avoid Avoid
character Avoid Avoid

enum Avoid Avoid Avoid Avoid Avoid Avoid
signed Avoid

unsigned Avoid

To

floating Avoid Avoid

Some inappropriate explicit casts are:

• In C99, the result of a cast of assignment to _Bool is always 0 or 1. This result is
not necessarily the case when casting to another type which is defined as essentially
Boolean.

• A cast to an essential enum type may result in a value that does not lie within the set
of enumeration constants for that type.

• A cast from essential Boolean to any other type is unlikely to be meaningful.
• Converting between floating and character types is not meaningful as there is no

precise mapping between the two representations.

Some acceptable explicit casts are:

8 MISRA C 2012

8-144

• To change the type in which a subsequent arithmetic operation is performed.
• To truncate a value deliberately.
• To make a type conversion explicit in the interests of clarity.

For more information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The value of an expression should not be cast to an inappropriate essential type.

Check Information
Group: The Essential Type Model
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.8

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.6

8-145

MISRA C:2012 Rule 10.6
The value of a composite expression shall not be assigned to an object with wider
essential type

Description

Rule Definition

The value of a composite expression shall not be assigned to an object with wider essential
type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

If you assign the result of a composite expression to a larger type, the implicit conversion
can result in loss of value, sign, precision, or layout.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

The composite expression is assigned to an object with a wider essential type.

Check Information
Group: The Essential Type Model
Category: Required

8 MISRA C 2012

8-146

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.3 | MISRA C:2012 Rule 10.7

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.7

8-147

MISRA C:2012 Rule 10.7
If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed then the other operand shall not have wider
essential type

Description

Rule Definition

If a composite expression is used as one operand of an operator in which the usual
arithmetic conversions are performed, then the other operand shall not have wider
essential type.

Rationale

A composite expression is a nonconstant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Restricting implicit conversion on composite expressions mean that sequences of
arithmetic operations within expressions must use the same essential type. This
restriction reduces confusion and avoids loss of value, sign, precision, or layout. However,
this rule does not imply that all operands in an expression are of the same essential type.

For information on essential types, see MISRA C:2012 Rule 10.1.

Message in Report

• The right operand shall not have wider essential type than the left operand which is a
composite expression.

8 MISRA C 2012

8-148

• The left operand shall not have wider essential type than the right operand which is a
composite expression.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 10.8

8-149

MISRA C:2012 Rule 10.8

The value of a composite expression shall not be cast to a different essential type
category or a wider essential type

Description

Rule Definition

The value of a composite expression shall not be cast to a different essential type category
or a wider essential type.

Rationale

A composite expression is a non-constant expression using a composite operator. In the
Essential Type Model, composite operators are:

• Multiplicative (*, /, %)
• Additive (binary +, binary -)
• Bitwise (&, |, ^)
• Shift (<<, >>)
• Conditional (?, :)

Casting to a wider type is not permitted because the result may vary between
implementations. Consider this expression:

(uint32_t) (u16a +u16b);

On a 16-bit machine the addition is performed in 16 bits. The result is wrapped before it
is cast to 32 bits. On a 32-bit machine, the addition takes place in 32 bits and preserves
high-order bits that are lost on a 16-bit machine. Casting to a narrower type with the
same essential type category is acceptable as the explicit truncation of the results always
leads to the same loss of information.

For information on essential types, see MISRA C:2012 Rule 10.1.

8 MISRA C 2012

8-150

Message in Report

• The value of a composite expression shall not be cast to a different essential type
category.

• The value of a composite expression shall not be cast to a wider essential type.

Examples

Casting to Different or Wider Essential Type

extern unsigned short ru16a, u16a, u16b;

extern unsigned int u32a, ru32a;

extern signed int s32a, s32b;

void foo(void)

{

 ru16a = (unsigned short) (u32a + u32a);/* Compliant */

 ru16a += (unsigned short) s32a + s32b;

 /* Noncompliant - different essential type */

 ru16a += (unsigned short) s32a; /* Compliant - s32a is not composite */

 ru32a = (unsigned int) (u16a + u16b); /* Noncompliant - wider essential type */

}

In this example, rule 10.8 is violated in the following cases:

• s32a and s32b are essentially signed variables. However, the result (s32a +
s32b) is cast to an essentially unsigned type.

• u16a and u16b are essentially unsigned short variables. However, the result
(s32a + s32b) is cast to a wider essential type, unsigned int.

Check Information
Group: The Essential Type Model
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 10.5

 MISRA C:2012 Rule 10.8

8-151

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-152

MISRA C:2012 Rule 11.1
Conversions shall not be performed between a pointer to a function and any other type

Description

Rule Definition

Conversions shall not be performed between a pointer to a function and any other type.

Rationale

The rule forbids the following two conversions:

• Conversion from a function pointer to any other type. This conversion causes
undefined behavior.

• Conversion from a function pointer to another function pointer, if the function
pointers have different argument and return types.

The conversion is forbidden because calling a function through a pointer with
incompatible type results in undefined behavior.

Polyspace Specification

Polyspace considers both explicit and implicit casts when checking this rule. However,
casts from NULL or (void*)0 do not violate this rule.

Message in Report

Conversions shall not be performed between a pointer to a function and any other type.

Examples

Cast between two function pointers

typedef void (*fp16) (short n);

 MISRA C:2012 Rule 11.1

8-153

typedef void (*fp32) (int n);

#include <stdlib.h> /* To obtain macro NULL */

void func(void) { /* Exception 1 - Can convert a null pointer

 * constant into a pointer to a function */

 fp16 fp1 = NULL; /* Compliant - exception */

 fp16 fp2 = (fp16) fp1; /* Compliant */

 fp32 fp3 = (fp32) fp1; /* Non-compliant */

 if (fp2 != NULL) {} /* Compliant - exception */

 fp16 fp4 = (fp16) 0x8000; /* Non-compliant - integer to

 * function pointer */}

In this example, the rule is violated when:

• The pointer fp1 of type fp16 is cast to type fp32. The function pointer types fp16
and fp32 have different argument types.

• An integer is cast to type fp16.

The rule is not violated when function pointers fp1 and fp2 are cast to NULL.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-154

MISRA C:2012 Rule 11.2
Conversions shall not be performed between a pointer to an incomplete type and any
other type

Description

Rule Definition

Conversions shall not be performed between a pointer to an incomplete type and any other
type.

Rationale

An incomplete type is a type that does not contain sufficient information to determine its
size. For example, the statement struct s; describes an incomplete type because the
fields of s are not defined. The size of a variable of type s cannot be determined.

Conversions to or from a pointer to an incomplete type result in undefined behavior.
Typically, a pointer to an incomplete type is used to hide the full representation of an
object. This encapsulation is broken if another pointer is implicitly or explicitly cast to
such a pointer.

Message in Report

Conversions shall not be performed between a pointer to an incomplete type and any
other type.

Examples

Casts from incomplete type

struct s *sp;

struct t *tp;

short *ip;

 MISRA C:2012 Rule 11.2

8-155

struct ct *ctp1;

struct ct *ctp2;

void foo(void) {

 ip = (short *) sp; /* Non-compliant */

 sp = (struct s *) 1234; /* Non-compliant */

 tp = (struct t *) sp; /* Non-compliant */

 ctp1 = (struct ct *) ctp2; /* Compliant */

 /* You can convert a null pointer constant to

 * a pointer to an incomplete type */

 sp = NULL; /* Compliant - exception */

 /* A pointer to an incomplete type may be converted into void */

 struct s *f(void);

 (void) f(); /* Compliant - exception */

}

In this example, types s, t and ct are incomplete. The rule is violated when:

• The variable sp with an incomplete type is cast to a basic type.
• The variable sp with an incomplete type is cast to a different incomplete type t.

The rule is not violated when:

• The variable ctp2 with an incomplete type is cast to the same incomplete type.
• The NULL pointer is cast to the variable sp with an incomplete type.
• The return value of f with incomplete type is cast to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.5

8 MISRA C 2012

8-156

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.3

8-157

MISRA C:2012 Rule 11.3
A cast shall not be performed between a pointer to object type and a pointer to a different
object type

Description

Rule Definition

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Rationale

If a pointer to an object is cast into a pointer to a different object, the resulting pointer
can be incorrectly aligned. The incorrect alignment causes undefined behavior.

Even if the conversion produces a pointer that is correctly aligned, the behavior can be
undefined if the pointer is used to access an object.

Exception: You can convert a pointer to object type into a pointer to one of the following
types:

• char

• signed char

• unsigned char

Message in Report

A cast shall not be performed between a pointer to object type and a pointer to a different
object type.

Examples

Noncompliant: Cast to Pointer Pointing to Object of Wider Type

signed char *p1;

8 MISRA C 2012

8-158

unsigned int *p2;

void foo(void){

 p2 = (unsigned int *) p1; /* Non-compliant */

}

In this example, p1 can point to a signed char object. However, p1 is cast to a pointer
that points to an object of wider type, unsigned int.

Noncompliant: Cast to Pointer Pointing to Object of Narrower Type

extern unsigned int read_value (void);

extern void display (unsigned int n);

void foo (void){

 unsigned int u = read_value ();

 unsigned short *hi_p = (unsigned short *) &u; /* Non-compliant */

 *hi_p = 0;

 display (u);

}

In this example, u is an unsigned int variable. &u is cast to a pointer that points to an
object of narrower type, unsigned short.

On a big-endian machine, the statement *hi_p = 0 attempts to clear the high bits of
the memory location that &u points to. But, from the result of display(u), you might
find that the high bits have not been cleared.

Compliant: Cast Adding a Type Qualifier

const short *p;

const volatile short *q;

void foo (void){

 q = (const volatile short *) p; /* Compliant */

}

In this example, both p and q can point to short objects. The cast between them adds a
volatile qualifier only and is therefore compliant.

Check Information
Group: Pointer Type Conversions

 MISRA C:2012 Rule 11.3

8-159

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4 | MISRA C:2012 Rule 11.5 | MISRA C:2012 Rule 11.8

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-160

MISRA C:2012 Rule 11.4
A conversion should not be performed between a pointer to object and an integer type

Description

Rule Definition

A conversion should not be performed between a pointer to object and an integer type.

Rationale

Conversion between integers and pointers can cause errors or undefined behavior.

• If an integer is cast to a pointer, the resulting pointer can be incorrectly aligned. The
incorrect alignment causes undefined behavior.

• If a pointer is cast to an integer, the resulting value can be outside the allowed range
for the integer type.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed between a pointer to object and an integer type.

Examples

Casts between pointer and integer

#include <stdbool.h>

typedef unsigned char uint8_t;

 MISRA C:2012 Rule 11.4

8-161

typedef char char_t;

typedef unsigned short uint16_t;

typedef signed int int32_t;

typedef _Bool bool_t;

uint8_t *PORTA = (uint8_t *) 0x0002; /* Non-compliant */

void foo(void) {

 char_t c = 1;

 char_t *pc = &c; /* Compliant */

 uint16_t ui16 = 7U;

 uint16_t *pui16 = &ui16; /* Compliant */

 pui16 = (uint16_t *) ui16; /* Non-compliant */

 uint16_t *p;

 int32_t addr = (int32_t) p; /* Non-compliant */

 bool_t b = (bool_t) p; /* Non-compliant */

 enum etag { A, B } e = (enum etag) p; /* Non-compliant */

}

In this example, the rule is violated when:

• The integer 0x0002 is cast to a pointer.

If the integer defines an absolute address, it is more common to assign the address
to a pointer in a header file. To avoid the assignment being flagged, you can then
exclude headers files from coding rules checking. For more information, see “Files and
folders to ignore (C)” on page 1-63 or “Files and folders to ignore (C++)” on page 2-22.

• The pointer p is cast to integer types such as int32_t, bool_t or enum etag.

The rule is not violated when the address &ui16 is assigned to a pointer.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

8 MISRA C 2012

8-162

See Also
MISRA C:2012 Rule 11.3 | MISRA C:2012 Rule 11.7 | MISRA C:2012 Rule 11.9

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.5

8-163

MISRA C:2012 Rule 11.5
A conversion should not be performed from pointer to void into pointer to object

Description

Rule Definition

A conversion should not be performed from pointer to void into pointer to object.

Rationale

If a pointer to void is cast into a pointer to an object, the resulting pointer can be
incorrectly aligned. The incorrect alignment causes undefined behavior. However, such a
cast can sometimes be necessary, for example, when using memory allocation functions.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A conversion should not be performed from pointer to void into pointer to object.

Examples

Cast from Pointer to void

void foo(void) {

 unsigned int u32a = 0;

 unsigned int *p32 = &u32a;

 void *p;

 unsigned int *p16;

8 MISRA C 2012

8-164

 p = p32; /* Compliant - pointer to uint32_t

 * into pointer to void */

 p16 = p; /* Non-compliant */

 p = (void *) p16; /* Compliant */

 p32 = (unsigned int *) p; /* Non-compliant */

}

In this example, the rule is violated when the pointer p of type void* is cast to pointers
to other types.

The rule is not violated when p16 and p32, which are pointers to non-void types, are
cast to void*.

Check Information
Group: Pointer Type Conversions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 11.2 | MISRA C:2012 Rule 11.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.6

8-165

MISRA C:2012 Rule 11.6
A cast shall not be performed between pointer to void and an arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to void and an arithmetic type.

Rationale

Conversion between integer types and pointers to void can cause errors or undefined
behavior.

• If an integer type is cast to a pointer, the resulting pointer can be incorrectly aligned.
The incorrect alignment causes undefined behavior.

• If a pointer is cast to an arithmetic type, the resulting value can be outside the
allowed range for the type.

Conversion between non-integer arithmetic types and pointers to void is undefined.

Polyspace Specification

Casts or implicit conversions from NULL or (void*)0 do not generate a warning.

Message in Report

A cast shall not be performed between pointer to void and an arithmetic type.

Examples

Casts Between Pointer to void and Arithmetic Types

void foo(void) {

8 MISRA C 2012

8-166

 void *p;

 unsigned int u;

 unsigned short r;

 p = (void *) 0x1234u; /* Non-compliant - undefined */

 u = (unsigned int) p; /* Non-compliant - undefined */

 p = (void *) 0; /* Compliant - Exception */

}

In this example, p is a pointer to void. The rule is violated when:

• An integer value is cast to p.
• p is cast to an unsigned int type.

The rule is not violated if an integer constant with value 0 is cast to a pointer to void.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.7

8-167

MISRA C:2012 Rule 11.7
A cast shall not be performed between pointer to object and a non-integer arithmetic type

Description

Rule Definition

A cast shall not be performed between pointer to object and a non-integer arithmetic type.

Rationale

This rule covers types that are essentially Boolean, character, enum or floating.

• If an essentially Boolean, character or enum variable is cast to a pointer, the resulting
pointer can be incorrectly aligned. The incorrect alignment causes undefined
behavior. If a pointer is cast to one of those types, the resulting value can be outside
the allowed range for the type.

• Casts to or from a pointer to a floating type results in undefined behavior.

Message in Report

A cast shall not be performed between pointer to object and a non-integer arithmetic
type.

Examples

Casts from Pointer to Non-Integer Arithmetic Types

int foo(void) {

 short *p;

 float f;

 long *l;

 f = (float) p; /* Non-compliant */

8 MISRA C 2012

8-168

 p = (short *) f; /* Non-compliant */

 l = (long *) p; /* Compliant */

}

In this example, the rule is violated when:

• The pointer p is cast to float.
• A float variable is cast to a pointer to short.

The rule is not violated when the pointer p is cast to long*.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.8

8-169

MISRA C:2012 Rule 11.8
A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer

Description

Rule Definition

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Rationale

This rule forbids:

• Casts from a pointer to a const object to a pointer that does not point to a const
object.

• Casts from a pointer to a volatile object to a pointer that does not point to a
volatile object.

Such casts violate type qualification. For example, the const qualifier indicates the read-
only status of an object. If a cast removes the qualifier, the object is no longer read-only.

Polyspace Specification

Polyspace flags both implicit and explicit conversions that violate this rule.

Message in Report

A cast shall not remove any const or volatile qualification from the type pointed to by a
pointer.

Check Information
Group: Pointer Type Conversions

8 MISRA C 2012

8-170

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 11.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 11.9

8-171

MISRA C:2012 Rule 11.9
The macro NULL shall be the only permitted form of integer null pointer constant

Description

Rule Definition

The macro NULL shall be the only permitted form of integer null pointer constant.

Rationale

The following expressions require the use of a null pointer constant:

• Assignment to a pointer
• The == or != operation, where one operand is a pointer
• The ?: operation, where one of the operands on either side of : is a pointer

Using NULL rather than 0 makes it clear that a null pointer constant was intended.

Message in Report

The macro NULL shall be the only permitted form of integer null pointer constant.

Examples

Using 0 for Pointer Assignments and Comparisons

void main(void) {

 int *p1 = 0; /* Non-compliant */

 int *p2 = (void *) 0; /* Compliant */

#define MY_NULL_1 0

#define MY_NULL_2 (void *) 0

8 MISRA C 2012

8-172

 if (p1 == MY_NULL_1) /* Non-compliant */

 { }

 if (p2 == MY_NULL_2) /* Compliant */

 { }

}

In this example, the rule is violated when the constant 0 is used instead of (void*) 0
for pointer assignments and comparisons.

Check Information
Group: Pointer Type Conversions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 11.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 12.1

8-173

MISRA C:2012 Rule 12.1
The precedence of operators within expressions should be made explicit

Description

Rule Definition

The precedence of operators within expressions should be made explicit.

Rationale

The C language has a large number of operators and their precedence is not intuitive.
Inexperienced programmers can easily make mistakes. Remove any ambiguity by using
parentheses to explicitly define operator precedence.

The following table list the MISRA C definition of operator precedence for this rule.

Description Operator and Operand Precedence

Primary identifier, constant, string literal, (expression) 16
Postfix [] () (function call) . -> ++(post-increment) --(post-

decrement) () {}(C99: compound literals)
15

Unary ++(post-increment) --(post-decrement) & * + - ~ !
sizeof defined (preprocessor)

14

Cast () 13
Multiplicative * / % 12
Additive + - 11
Bitwise shift << >> 10
Relational <> <= >= 9
Equality == != 8
Bitwise AND & 7
Bitwise XOR ^ 6
Bitwise OR | 5

8 MISRA C 2012

8-174

Description Operator and Operand Precedence

Logical AND && 4
Logical OR || 3
Conditional ?: 2
Assignment = *= /= += -= <<= >>= &= ^= |= 1
Comma , 0

Message in Report

Operand of logical %s is not a primary expression. The precedence of operators within
expressions should be made explicit.

Examples

Ambiguous Precedence in Multi-Operation Expressions

int a, b, c, d, x;

void foo(void) {

 x = sizeof a + b; /* Non-compliant - MISRA-12.1 */

 x = a == b ? a : a - b; /* Non-compliant - MISRA-12.1 */

 x = a << b + c ; /* Non-compliant - MISRA-12.1 */

 if (a || b && c) { } /* Non-compliant - MISRA-12.1 */

 if ((a>x) && (b>x) || (c>x)) { } /* Non-compliant - MISRA-12.1 */

}

This example shows various violations of MISRA rule 12.1. In each violation, if you do
not know the order of operations, the code could execute unexpectedly.

Correction — Clarify With Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

 MISRA C:2012 Rule 12.1

8-175

int a, b, c, d, x;

void foo(void) {

 x = sizeof(a) + b;

 x = (a == b) ? a : (a - b);

 x = a << (b + c);

 if ((a || b) && c) { }

 if (((a>x) && (b>x)) || (c>x)) { }

}

Ambiguous Precedence In Preprocessing Expressions

if defined X && X + Y > Z /* Non-compliant - MISRA-12.1 */

endif

if ! defined X && defined Y /* Non-compliant - MISRA-12.1 */

endif

In this example, two violations of MISRA rule 12.1 are shown in preprocessing code.
In each violation, if you do not know the correct order of operations, the results can be
unexpected and cause problems.

Correction — Clarify with Parentheses

To comply with this MISRA rule, add parentheses around individual operations in the
expressions. One possible solution is shown here.

if defined (X) && ((X + Y) > Z)

endif

if ! defined (X) && defined (Y)

endif

Compliant Expressions Without Parentheses

int a, b, c, x;

struct {int a; } s, *ps, *pp[2];

void foo(void) {

8 MISRA C 2012

8-176

 ps = &s

 pp[i]-> a; /* Compliant - no need to write (pp[i])->a */

 ps++; / Compliant - no need to write *(p++) */

 x = f (a + b, c); /* Compliant - no need to write f ((a+b),c) */

 x = a, b; /* Compliant - parsed as (x = a), b */

 if (a && b && c){ /* Compliant - all operators have

 * the same precedence */

}

In this example, the expressions shown have multiple operations. However, these
expressions are compliant because operator precedence is already clear.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.2 | MISRA C:2012 Rule 12.3 | MISRA C:2012 Rule 12.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.2

8-177

MISRA C:2012 Rule 12.2
The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand

Description

Rule Definition

The right hand operand of a shift operator shall lie in the range zero to one less than the
width in bits of the essential type of the left hand operand.

Rationale

Consider the following statement:

var = abc << num;

If abc is a 16-bit integer, then num must be in the range 0–15, (nonnegative and less than
16). If num is negative or greater than 16, then the shift behavior is undefined.

Polyspace Specification

In Polyspace, the numbers that are manipulated in preprocessing directives are 64 bits
wide. The valid shift range is between 0 and 63. When bitfields are within a complex
expression, Polyspace extends this check onto the bitfield field width or the width of the
base type.

Message in Report

• Shift amount is bigger than size.
• Shift amount is negative.
• The right operand of a shift operator shall lie in the range zero to one less than the

width in bits of the essential type of the left operand.

Check Information
Group: Expressions

8 MISRA C 2012

8-178

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.3

8-179

MISRA C:2012 Rule 12.3
The comma operator should not be used

Description

Rule Definition

The comma operator should not be used.

Rationale

Use of the comma operator is generally detrimental to the readability of code. The same
code can usually be written in another form.

Message in Report

The comma operator should not be used.

Examples

Comma Usage in C Code

typedef signed int abc, xyz, jkl;

static void func1 (abc, xyz, jkl); /* Compliant */

int foo(void)

{

 volatile int rd = 1; /* Compliant */

 int var=0, foo=0, k=0, n=2, p, t[10]; /* Compliant */

 int abc = 0, xyz = abc + 1; /* Compliant */

 int jkl = (abc + xyz, abc + xyz); /* Not compliant */

 var = 1, foo += var, kkk = 3; /* Not compliant */

8 MISRA C 2012

8-180

 var = (kkk = 1, foo = 2); /* Not compliant */

 for (var = 0, ptr = &t[0]; var < num; ++var, ++ptr){}

 /* Not compliant */

 if ((abc,xyz)<0) { return 1; } /* Not compliant */

}

In this example, the code shows various uses of commas in C code. Using commas to call
functions with variables is allowed (line 3). When using the comma for initialization, the
variables and values must be clear (line 8 and 10). Line 11 is not compliant because it
is unclear what jkl is initialized to. (For example, abc+xyz, (abc+xyz)*(abc+xyz),
f((abc+xyz),(abc+xyz)), etc.)

Line 13 and 14 are both assignment statements, but it is unclear which variables are
getting assigned which values.

Line 16 violates multiple MISRA coding rules because the complex for statement makes
it unclear which values control the loop.

Line 18 violates rule 12.3 because it is unclear if the if statement depends on abc, xyz,
or both.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 12.4

8-181

MISRA C:2012 Rule 12.4
Evaluation of constant expressions should not lead to unsigned integer wrap-around

Description

Rule Definition

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Rationale

Unsigned integer expressions do not strictly overflow, but instead wraparound. Although
there may be good reasons to use modulo arithmetic at run time, intentional use at
compile time is less likely.

Message in Report

Evaluation of constant expressions should not lead to unsigned integer wrap-around.

Check Information
Group: Expressions
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 12.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

8 MISRA C 2012

8-182

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 13.1

8-183

MISRA C:2012 Rule 13.1
Initializer lists shall not contain persistent side effects

Description

Rule Definition

Initializer lists shall not contain persistent side effects.

Rationale

C99 permits initializer lists with expressions that can be evaluated only at run-time.
However, the order in which elements of the list are evaluated is not defined. If one
element of the list modifies the value of a variable which is used in another element, the
ambiguity in order of evaluation causes undefined values. Therefore, this rule requires
that expressions occurring in an initializer list cannot modify the variables used in them.

Message in Report

Initializer lists shall not contain persistent side effects.

Examples

Initializers with Persistent Side Effect

volatile int v;

int x;

int y;

void f(void) {

 int arr[2] = {x+y,x-y}; /* Compliant */

 int arr2[2] = {v,0}; /* Non-compliant */

 int arr3[2] = {x++,y}; /* Non-compliant */

}

8 MISRA C 2012

8-184

In this example, the rule is not violated in the first initialization because the initializer
does not modify either x or y. The rule is violated in the other initializations.

• In the second initialization, because v is volatile, the initializer can modify v.
• In the third initialization, the initializer modifies the variable x.

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.2

8-185

MISRA C:2012 Rule 13.2
The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders

Description

Rule Definition

The value of an expression and its persistent side effects shall be the same under all
permitted evaluation orders.

Rationale

An expression can have different values under the following conditions:

• The same variable is modified more than once in the expression, or is both read and
written.

• The expression allows more than one order of evaluation.

Therefore, this rule forbids expressions where a variable is modified more than once and
can cause different results under different orders of evaluation.

Polyspace Specification

Rule 13.2 assumes that the comma operator is not used (rule 12.3).

Message in Report

The value of 'XX' depends on the order of evaluation. The value of volatile 'XX' depends
on the order of evaluation because of multiple accesses.

Examples

Variable Modified More Than Once in Expression

int a[10], b[10];

8 MISRA C 2012

8-186

#define COPY_ELEMENT(index) (a[(index)]=b[(index)])

void main () {

 int i=0, k=0;

 COPY_ELEMENT (k); /* Compliant */

 COPY_ELEMENT (i++); /* Non-compliant */

}

In this example, the rule is violated by the statement COPY_ELEMENT(i++) because i++
occurs twice and the order of evaluation of the two expressions is unspecified.

Variable Modified and Used in Multiple Function Arguments

void f (unsigned int param1, unsigned int param2) {}

void main () {

 unsigned int i=0;

 f (i++, i); /* Non-compliant */

}

In this example, the rule is violated because it is unspecified whether the operation i
++ occurs before or after the second argument is passed to f. The call f(i++,i) can
translate to either f(0,0) or f(0,1).

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9 | MISRA C:2012 Rule 13.1 | MISRA C:2012 Rule 13.3 |
MISRA C:2012 Rule 13.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 13.2

8-187

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-188

MISRA C:2012 Rule 13.3
A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator

Description

Rule Definition

A full expression containing an increment (++) or decrement (--) operator should have no
other potential side effects other than that caused by the increment or decrement operator.

Rationale

The rule is violated if the following happens in the same line of code:

• The increment or decrement operator acts on a variable.
• Another read or write operation is performed on the variable.

For example, the line y=x++ violates this rule. The ++ and = operator both act on x.

Although the operator precedence rules determine the order of evaluation, placing the ++
and another operator in the same line can reduce the readability of the code.

Message in Report

A full expression containing an increment (++) or decrement (--) operator should have
no other potential side effects other than that caused by the increment or decrement
operator.

Examples

Increment Operator Used in Expression with Other Side Effects

int input(void);

 MISRA C:2012 Rule 13.3

8-189

int choice(void);

int operation(int, int);

int func() {

 int x = input(), y = input(), res;

 int ch = choice();

 if (choice == -1)

 return(x++);

 if (choice == 0) {

 res = x++ + y++;

 return(res); /* Non-compliant */

 }

 else if (choice == 1) {

 x++; /* Compliant */

 y++; /* Compliant */

 return (x+y);

 }

 else {

 res = operation(x++,y);

 return(res); /* Non-compliant */

 }

}

In this example, the rule is violated when the expressions containing the ++ operator
have side effects other than that caused by the operator. For example, in the expression
return(x++), the other side-effect is the return operation.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

8 MISRA C 2012

8-190

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.4

8-191

MISRA C:2012 Rule 13.4
The result of an assignment operator should not be used

Description

Rule Definition

The result of an assignment operator should not be used.

Rationale

The rule is violated if the following happens in the same line of code:

• The assignment operator acts on a variable.
• Another read or operation is performed on the result of the assignment.

For example, the line a[x]=a[x=y]; violates this rule. The [] operator acts on the
result of the assignment x=y.

Message in Report

The result of an assignment operator should not be used.

Examples

Result of Assignment Used

int x, y, b, c, d;

int a[10];

unsigned int bool_var, false=0, true=1;

int foo(void) {

 x = y; /* Compliant - x is not used */

 a[x] = a[x = y]; /* Non-compliant - Value of x=y is used */

8 MISRA C 2012

8-192

 if (bool_var = false) {}

 /* Non-compliant - bool_var=false is used */

 if (bool_var == false) {} /* Compliant */

 if ((0u == 0u) || (bool_var = true)) {}

 /* Non-compliant - even though (bool_var=true) is not evaluated */

 if ((x = f ()) != 0) {}

 /* Non-compliant - value of x=f() is used */

 a[b += c] = a[b];

 /* Non-compliant - value of b += c is used */

 b = c = d = 0; /* Non-compliant - value of d=0 and c=d=0 are used */

}

In this example, the rule is violated when the result of an assignment is used.

Check Information
Group: Side Effects
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 13.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 13.5

8-193

MISRA C:2012 Rule 13.5
The right hand operand of a logical && or ||operator shall not contain persistent side
effects

Description

Rule Definition

The right hand operand of a logical && or ||operator shall not contain persistent side
effects.

Rationale

The right operand of an || operator is not evaluated if the left operand is true. The right
operand of an && operator is not evaluated if the left operand is false. In these cases, if
the right operand modifies the value of a variable, the modification does not take place.
Following the operation, if you expect a modified value of the variable, the modification
might not always happen.

Polyspace Specification

• For this rule, Polyspace considers that all function calls have a persistent side effect.
• If the right operand is a volatile variable, Polyspace does not flag this as a rule

violation.

Message in Report

The right hand operand of a && operator shall not contain side effects. The right hand
operand of a || operator shall not contain side effects.

Examples

Right Operand of Logical Operator with Persistent Side Effects

int check (int arg) {

8 MISRA C 2012

8-194

 static int count;

 if(arg > 0) {

 count++; /* Persistent side effect */

 return 1;

 }

 else

 return 0;

}

int getSwitch(void);

int getVal(void);

void main(void) {

 int val = getVal();

 int mySwitch = getSwitch();

 int checkResult;

 if(mySwitch && check(val)) { /* Non-compliant */

 }

 checkResult = check(val);

 if(checkResult && mySwitch) { /* Compliant */

 }

 if(check(val) && mySwitch) { /* Compliant */

 }

}

In this example, the rule is violated when the right operand of the && operation contains
a function call. The function call has a persistent side effect because the static variable
count is modified in the function body. Depending on mySwitch, this modification might
or might not happen.

The rule is not violated when the left operand contains a function call. Alternatively,
to avoid the rule violation, assign the result of the function call to a variable. Use this
variable in the logical operation in place of the function call.

In this example, the function call has the side effect of modifying a static variable.
Polyspace flags all function calls when used on the right-hand side of a logical && or
|| operator, even when the function does not have a side effect. Manually inspect your
function body to see if it has side effects. If the function does not have side effects, add
a comment and justification in your Polyspace result explaining why you retained your
code.

 MISRA C:2012 Rule 13.5

8-195

Check Information
Group: Side Effects
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-196

MISRA C:2012 Rule 13.6
The operand of the sizeof operator shall not contain any expression which has potential
side effects

Description

Rule Definition

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Rationale

The argument of a sizeof operator is usually not evaluated at run time. If the argument
is an expression, you might wrongly expect that the expression is evaluated.

Polyspace Specification

The rule is not violated if the argument is a volatile variable.

Message in Report

The operand of the sizeof operator shall not contain any expression which has potential
side effects.

Examples

Expressions in sizeof Operator

#include <stddef.h>

int x;

int y[40];

struct S {

 int a;

 MISRA C:2012 Rule 13.6

8-197

 int b;

};

struct S myStruct;

void main() {

 size_t sizeOfType;

 sizeOfType = sizeof(x); /* Compliant */

 sizeOfType = sizeof(y); /* Compliant */

 sizeOfType = sizeof(myStruct); /* Compliant */

 sizeOfType = sizeof(x++); /* Non-compliant */

}

In this example, the rule is violated when the expression x++ is used as argument of
sizeof operator.

Check Information
Group: Side Effects
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.8

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-198

MISRA C:2012 Rule 14.1
A loop counter shall not have essentially floating type

Description

Rule Definition

A loop counter shall not have essentially floating type.

Rationale

When using a floating-point loop counter, accumulation of rounding errors can result in
a mismatch between the expected and actual number of iterations. This rounding error
can happen when a loop step that is not a power of the floating point radix is rounded to
a value that can be represented by a float.

Even if a loop with a floating-point loop counter appears to behave correctly on one
implementation, it can give a different number of iteration on another implementation.

Polyspace Specification

If the for index is a variable symbol, Polyspace checks that it is not a float.

Message in Report

A loop counter shall not have essentially floating type.

Examples

for Loop Counters

int main(void){

 unsigned int counter = 0u;

 int result = 0;

 MISRA C:2012 Rule 14.1

8-199

 float foo;

 // Float loop counters

 for(float foo = 0.0f; foo < 1.0f; foo +=0.001f){

 /* Non-compliant - counter = 1000 at the end of the loop */

 ++counter;

 }

 float fff = 0.0f;

 for(fff = 0.0f; fff <12.0f; fff += 1.0f){ /* Non-compliant*/

 result++;

 }

 // Integer loop count

 for(unsigned int count = 0u; count < 1000u; ++count){ /* Compliant */

 foo = (float) count * 0.001f;

 }

}

In this example, the three for loops show three different loop counters. The first and
second for loops use float variables as loop counters, and therefore are not compliant.
The third loop uses the integer count as the loop counter. Even though count is used
as a float inside the loop, the variable remains an integer when acting as the loop index.
Therefore, this for loop is compliant.

while Loop Counters

int main(void){

 unsigned int u32a;

 float foo;

 foo = 0.0f;

 while (foo < 1.0f){

 foo += 0.001f; /* Non-compliant - foo used as a loop counter */

 }

 foo = read_float32();

 do{

 u32a = read_u32();

 }while(((float)u32a - foo) > 10.0f);

 /* Compliant - foo doesn't change in the loop */

 /* so cannot be a counter */

 return 1;

8 MISRA C 2012

8-200

}

This example shows two while loops both of which use foo in the while-loop conditions.

The first while loop uses foo in the condition and inside the loop. Because foo changes,
floating-point rounding errors can cause unexpected behavior.

The second while loop does not use foo inside the loop, but does use foo inside the
while-condition. So foo is not the loop counter. The integer u32a is the loop counter
because it changes inside the loop and is part of the while condition. Because u32a is an
integer, the rounding error issue is not a concern, making this while loop compliant.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.2

8-201

MISRA C:2012 Rule 14.2
A for loop shall be well-formed

Description

Rule Definition

A for loop shall be well-formed.

Rationale

The for statement provides a general-purpose looping facility. Using a restricted form of
loop makes code easier to review and to analyze.

Polyspace Specification

Polyspace checks that:

• The for loop index (V) is a variable symbol.
• V is the last assigned variable in the first expression (if present).
• If the first expression exists, it contains an assignment of V.
• If the second expression exists, it is a comparison of V.
• If the third expression exists, it is an assignment of V.
• There are no direct assignments of the for loop index.

Message in Report

• 1st expression should be an assignment. The following kinds of for loops are allowed:

• all three expressions shall be present;
• the 2nd and 3rd expressions shall be present with prior initialization of the loop

counter;
• all three expressions shall be empty for a deliberate infinite loop.

• 3rd expression should be an assignment of a loop counter.

8 MISRA C 2012

8-202

• 3rd expression : assigned variable should be the loop counter (counter).
• 3rd expression should be an assignment of loop counter (counter) only.
• 2nd expression should contain a comparison with loop counter (counter).
• Loop counter (counter) should not be modified in the body of the loop.
• Bad type for loop counter (counter).

Examples

Altering the Loop Counter Inside the Loop

void foo(void){

 for(short index=0; index < 5; index++){ /* Non-compliant */

 index = index + 3; /* Altering the loop counter */

 }

}

In this example, the loop counter index changes inside the for loop. It is hard to
determine when the loop terminates.

Correction — Use Another Variable to Terminate Early

One possible correction is to use an extra flag to terminate the loop early.

In this correction, the second clause of the for loop depends on the counter value, index
< 5, and upon an additional flag, !flag. With the additional flag, the for loop definition
and counter remain readable, and you can escape the loop early.

#define FALSE 0

#define TRUE 1

void foo(void){

 int flag = FALSE;

 for(short index=0; (index < 5) && !flag; index++){ /* Compliant */

 if((index % 4) == 0){

 flag = TRUE; /* allows early termination of loop */

 }

 }

 MISRA C:2012 Rule 14.2

8-203

}

for Loops With Empty Clauses

void foo(void)

 for(short index = 0; ; index++) {} /* Non-compliant */

 for(short index = 0; index < 10;) {} /* Non-compliant */

 short index;

 for(; index < 10;) {} /* Non-compliant */

 for(; index < 10; i++) {} /* Compliant */

 for(;;){}

 /* Compliant - Exception all three clauses can be empty */

}

This example shows for loops definitions with a variety of missing clauses. To be
compliant, initialize the first clause variable before the for loop (line 9). However, you
cannot have a for loop without the second or third clause.

The one exception is a for loop with all three clauses empty, so as to allow for infinite
loops.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 14.1 | MISRA C:2012 Rule 14.3 | MISRA C:2012 Rule 14.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

8 MISRA C 2012

8-204

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.3

8-205

MISRA C:2012 Rule 14.3
Controlling expressions shall not be invariant

Description

Rule Definition

Controlling expressions shall not be invariant.

Rationale

If the controlling expression, for example an if condition, has a constant value, the non-
changing value can point to a programming error.

Polyspace Specification

Polyspace Bug Finder and Polyspace Code Prover check this coding rule differently. The
analyses can produce different results.

Polyspace Bug Finder flags some violations of MISRA C 14.3 through the Dead code
and Useless if checkers.

Polyspace Code Prover does not use gray code to flag MISRA C 14.3 violations.

Message in Report

• Boolean operations whose results are invariant shall not be permitted.
• Expression is always true.
• Boolean operations whose results are invariant shall not be permitted.
• Expression is always false.
• Controlling expressions shall not be invariant.

Check Information
Group: Control Statement Expressions

8 MISRA C 2012

8-206

Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 14.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 14.4

8-207

MISRA C:2012 Rule 14.4
The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Description

Rule Definition

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type

Rationale

Strong typing requires the controlling expression on an if statement or iteration
statement to have essentially Boolean type.

Polyspace Specification

Polyspace does not flag integer constants, for example if(2).

If your configuration includes the option -boolean-types, the number of warnings can
increase or decrease.

Message in Report

The controlling expression of an if statement and the controlling expression of an
iteration-statement shall have essentially Boolean type.

Examples

Controlling Expression in if, while, and for

#include <stdbool.h>

#include <stdlib.h>

8 MISRA C 2012

8-208

#define TRUE = 1

typedef _Bool bool_t;

extern bool_t flag;

void foo(void){

 int *p = 1;

 int *q = 0;

 int i = 0;

 while(p){} /* Non-compliant - p is a pointer */

 while(q != NULL){} /* Compliant */

 while(TRUE){} /* Compliant */

 while(flag){} /* Compliant */

 if(i){} /* Non-compliant - int32_t is not boolean */

 if(i != 0){} /* Compliant */

 for(int i=-10; i;i++){} /* Non-compliant - int32_t is not boolean */

 for(int i=0; i<10;i++){} /* Compliant */

}

This example shows various controlling expressions in while, if, and for statements.

The noncompliant statements (the first while, if, and for examples), use a single
non-Boolean variable. If you use a single variable as the controlling statement, it must
be essentially Boolean (lines 17 and 19). Boolean expressions are also compliant with
MISRA.

Check Information
Group: Control Statement Expressions
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.2 | MISRA C:2012 Rule 20.8

 MISRA C:2012 Rule 14.4

8-209

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-210

MISRA C:2012 Rule 15.1
The goto statement should not be used

Description

Rule Definition

The goto statement should not be used.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand.

Message in Report

The goto statement should not be used.

Examples

Use of goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Non-compliant */

 }

label2: {

 result++;

 goto label1; /* Non-compliant */

 }

}

 MISRA C:2012 Rule 15.1

8-211

In this example, the rule is violated when goto statements are used.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-212

MISRA C:2012 Rule 15.2
The goto statement shall jump to a label declared later in the same function

Description

Rule Definition

The goto statement shall jump to a label declared later in the same function.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult
to understand. You can use a forward goto statement together with a backward one
to implement iterations. Restricting backward goto statements ensures that you use
only iteration statements provided by the language such as for or while to implement
iterations. This restriction reduces visual complexity of the code.

Message in Report

The goto statement shall jump to a label declared later in the same function.

Examples

Use of Backward goto Statements

void foo(void) {

 int i = 0, result = 0;

label1:

 for (i; i < 5; i++) {

 if (i > 2) goto label2; /* Compliant */

 }

label2: {

 result++;

 MISRA C:2012 Rule 15.2

8-213

 goto label1; /* Non-compliant */

 }

}

In this example, the rule is violated when a goto statement causes a backward jump to
label1.

The rule is not violated when a goto statement causes a forward jump to label2.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 15.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-214

MISRA C:2012 Rule 15.3
Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement

Description

Rule Definition

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Rationale

Unrestricted use of goto statements makes the program unstructured and difficult to
understand. Restricting use of goto statements to jump between blocks or into nested
blocks reduces visual code complexity.

Message in Report

Any label referenced by a goto statement shall be declared in the same block, or in any
block enclosing the goto statement.

Examples

goto Statements Jump Inside Block

void f1(int a) {

 if(a <= 0) {

 goto L2; /* Non-compliant - L2 in different block*/

 }

 goto L1; /* Compliant - L1 in same block*/

 if(a == 0) {

 MISRA C:2012 Rule 15.3

8-215

 goto L1; /* Compliant - L1 in outer block*/

 }

 goto L2; /* Non-compliant - L2 in inner block*/

 L1: if(a > 0) {

 L2:;

 }

}

In this example, goto statements cause jumps to different labels. The rule is violated
when:

• The label occurs in a block different from the block containing the goto statement.

The block containing the label neither encloses nor is enclosed by the current block.
• The label occurs in a block enclosed by the block containing the goto statement.

The rule is not violated when:

• The label occurs in the same block as the block containing the goto statement..
• The label occurs in a block that encloses the block containing the goto statement..

goto Statements in switch Block

void f2 (int x, int z) {

 int y = 0;

 switch(x) {

 case 0:

 if(x == y) {

 goto L1; /* Non-compliant - switch-clauses are treated as blocks */

 }

 break;

 case 1:

 y = x;

 L1: ++x;

 break;

 default:

 break;

 }

}

8 MISRA C 2012

8-216

In this example, the label for the goto statement appears to occur in a block that
encloses the block containing the goto statement. However, for the purposes of this rule,
the software considers that each case statement begins a new block. Therefore, the goto
statement violates the rule.

Check Information
Group: Control Flow
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.4 |
MISRA C:2012 Rule 16.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.4

8-217

MISRA C:2012 Rule 15.4
There should be no more than one break or goto statement used to terminate any
iteration statement

Description

Rule Definition

There should be no more than one break or goto statement used to terminate any iteration
statement.

Rationale

If you use one break or goto statement in your loop, you have one secondary exit
point from the loop. Restricting number of exits from a loop in this way reduces visual
complexity of your code.

Message in Report

There should be no more than one break or goto statement used to terminate any
iteration statement.

Examples

break Statements in Inner and Outer Loops

volatile int stop;

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

 for (i=0; i< size; i++) { /* Compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

8 MISRA C 2012

8-218

 if(stop)

 break;

 sum += arr[j];

 }

 }

}

In this example, the rule is not violated in both the inner and outer loop because both
loops have one break statement each.

break and goto Statements in Loop

volatile int stop;

void displayStopMessage();

int func(int *arr, int size, int sat) {

 int i;

 int sum = 0;

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 if(stop)

 goto L1;

 sum += arr[i];

 }

 L1: displayStopMessage();

}

In this example, the rule is violated because the for loop has one break statement and
one goto statement.

goto Statement in Inner Loop and break Statement in Outer Loop

volatile int stop;

void displayMessage();

int func(int *arr, int size, int sat) {

 int i,j;

 int sum = 0;

 MISRA C:2012 Rule 15.4

8-219

 for (i=0; i< size; i++) { /* Non-compliant */

 if(sum >= sat)

 break;

 for (j=0; j< i; j++) { /* Compliant */

 if(stop)

 goto L1;

 sum += arr[i];

 }

 }

 L1: displayMessage();

}

In this example, the rule is not violated in the inner loop because you can exit the loop
only through the one goto statement. However, the rule is violated in the outer loop
because you can exit the loop through either the break statement or the goto statement
in the inner loop.

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.1 | MISRA C:2012 Rule 15.2 | MISRA C:2012 Rule 15.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-220

MISRA C:2012 Rule 15.5
A function should have a single point of exit at the end

Description

Rule Definition

A function should have a single point of exit at the end.

Rationale

This rule requires that a return statement must occur as the last statement in the
function body. Otherwise, the following issues can occur:

• Code following a return statement can be unintentionally omitted.
• If a function that modifies some of its arguments has early return statements, when

reading the code, it is not immediately clear which modifications actually occur.

Message in Report

A function should have a single point of exit at the end.

Examples

More Than One return Statement in Function

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t f1(unsigned short n, char *p) { /* Non-compliant */

 if(n > MAX) {

 MISRA C:2012 Rule 15.5

8-221

 return false;

 }

 if(p == NULL) {

 return false;

 }

 return true;

}

In this example, the rule is violated because there are three return statements.

Correction — Use Variable to Store Return Value

One possible correction is to store the return value in a variable and return this variable
just before the function ends.

#define MAX ((unsigned int)2147483647)

#define NULL (void*)0

typedef unsigned int bool_t;

bool_t false = 0;

bool_t true = 1;

bool_t return_value;

bool_t f2 (unsigned short n, char *p) { /* Compliant */

 return_value = true;

 if(n > MAX) {

 return_value = false;

 }

 if(p == NULL) {

 return_value = false;

 }

 return return_value;

}

Check Information
Group: Control Flow
Category: Advisory
AGC Category: Advisory

8 MISRA C 2012

8-222

Language: C90, C99

See Also
MISRA C:2012 Rule 17.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 15.6

8-223

MISRA C:2012 Rule 15.6
The body of an iteration- statement or a selection- statement shall be a compound-
statement

Description

Rule Definition

The body of an iteration-statement or a selection-statement shall be a compound-
statement.

Rationale

The rule applies to:

• Iteration statements such as while, do ... while or for.
• Selection statements such as if ... else or switch.

If the block of code associated with an iteration or selection statement is not contained in
braces, you can make mistakes about the association. For example:

• You can wrongly associate a line of code with an iteration or selection statement
because of its indentation.

• You can accidentally place a semicolon following the iteration or selection statement.
Because of the semicolon, the line following the statement is no longer associated with
the statement even though you intended otherwise.

Message in Report

• The else keyword shall be followed by either a compound statement, or another if
statement.

• An if (expression) construct shall be followed by a compound statement.
• The statement forming the body of a while statement shall be a compound statement.
• The statement forming the body of a do ... while statement shall be a compound

statement.

8 MISRA C 2012

8-224

• The statement forming the body of a for statement shall be a compound statement.
• The statement forming the body of a switch statement shall be a compound

statement.

Examples

Iteration Block

int data_available = 1;

void f1(void) {

 while(data_available) /* Non-compliant */

 process_data();

 while(data_available) { /* Compliant */

 process_data();

 }

}

In this example, the second while block is enclosed in braces and does not violate the
rule.

Nested Selection Statements

void f1(void) {

 if(flag_1) /* Non-compliant */

 if(flag_2) /* Non-compliant */

 action_1();

 else /* Non-compliant */

 action_2();

}

In this example, the rule is violated because the if or else blocks are not enclosed in
braces. Unless indented as above, it is easy to associate the else statement with the
inner if.

Correction — Place Selection Statement Block in Braces

One possible correction is to enclose each block associated with an if or else statement
in braces.

void f1(void) {

 MISRA C:2012 Rule 15.6

8-225

 if(flag_1) { /* Compliant */

 if(flag_2) { /* Compliant */

 action_1();

 }

 }

 else { /* Compliant */

 action_2();

 }

}

Spurious Semicolon After Iteration Statement

void f1(void) {

 while(flag_1); /* Non-compliant */

 {

 flag_1 = action_1();

 }

}

In this example, the rule is violated even though the while statement is followed by
a block in braces. The semicolon following the while statement causes the block to
dissociated from the while statement.

The rule helps detect such spurious semicolons.

Check Information
Group: Control Flow
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-226

MISRA C:2012 Rule 15.7

All if … else if constructs shall be terminated with an else statement

Description

Rule Definition

All if … else if constructs shall be terminated with an else statement.

Rationale

Unless there is a terminating else statement in an if...elseif...else construct,
during code review, it is difficult to tell if you considered all possible results for the if
condition.

Message in Report

All if … else if constructs shall be terminated with an else statement.

Examples

Missing else Block

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

 MISRA C:2012 Rule 15.7

8-227

 /* Non-compliant */

 action_2();

 }

}

In this example, the rule is violated because the if ... else if construct does not
have a terminating else block.

Correction — Add else Block

To avoid the rule violation, add a terminating else block. The block can be empty.

int get_flag_1(void);

int get_flag_2(void);

void action_1(void);

void action_2(void);

void f1(void) {

 int flag_1 = get_flag_1(), flag_2 = get_flag_2();

 if(flag_1) {

 action_1();

 }

 else if(flag_2) {

 /* Non-compliant */

 action_2();

 }

 else {

 /* No statement required */

 /* ; is optional */

 }

}

Check Information
Group: Control Flow
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 16.5

8 MISRA C 2012

8-228

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 16.1

8-229

MISRA C:2012 Rule 16.1

All switch statements shall be well-formed

Description

Rule Definition

All switch statements shall be well-formed

Rationale

The syntax for switch statements in C is not particularly rigorous and can allow complex,
unstructured behavior. This rule and other rules impose a simple consistent structure on
the switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

8 MISRA C 2012

8-230

See Also
MISRA C:2012 Rule 15.3 | MISRA C:2012 Rule 16.2 | MISRA C:2012 Rule 16.3 |
MISRA C:2012 Rule 16.4 | MISRA C:2012 Rule 16.5 | MISRA C:2012 Rule 16.6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.2

8-231

MISRA C:2012 Rule 16.2
A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Description

Rule Definition

A switch label shall only be used when the most closely-enclosing compound statement is
the body of a switch statement

Rationale

The C Standard permits placing a switch label (for instance, case or default) before
any statement contained in the body of a switch statement. This flexibility can lead to
unstructured code. To prevent unstructured code, make sure a switch label appears only
at the outermost level of the body of a switch statement.

Message in Report

All messages in report file begin with "MISRA-C switch statements syntax normative
restriction."

• Initializers shall not be used in switch clauses.
• The child statement of a switch shall be a compound statement.
• All switch clauses shall appear at the same level.
• A switch clause shall only contain switch labels and switch clauses, and no other code.
• A switch statement shall only contain switch labels and switch clauses, and no other

code.

Check Information
Group: Switch Statements
Category: Required

8 MISRA C 2012

8-232

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.3

8-233

MISRA C:2012 Rule 16.3
An unconditional break statement shall terminate every switch-clause

Description

Rule Definition

An unconditional break statement shall terminate every switch-clause

Rationale

A switch-clause is a case containing at least one statement. Two consecutive labels
without an intervening statement is compliant with MISRA.

If you fail to end your switch-clauses with a break statement, then control flow “falls”
into the next statement. This next statement can be another switch-clause, or the end of
the switch. This behavior is sometimes intentional, but more often it is an error. If you
add additional cases later, an unterminated switch-clause can cause problems.

Polyspace Specification

Polyspace raises a warning for each noncompliant case clause.

Message in Report

An unconditional break statement shall terminate every switch-clause.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

8 MISRA C 2012

8-234

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.4

8-235

MISRA C:2012 Rule 16.4
Every switch statement shall have a default label

Description

Rule Definition

Every switch statement shall have a default label

Rationale

The requirement for a default label is defensive programming. Even if your switch
covers all possible values, there is no guarantee that the input takes one of these values.
Statements following the default label take some appropriate action. If the default
label requires no action, use comments to describe why there are no specific actions.

Message in Report

Every switch statement shall have a default label.

Examples

Switch Statement Without default

short func1(short xyz){

 switch(xyz){ /* Non-compliant - default label is required */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 }

 return xyz;

}

8 MISRA C 2012

8-236

In this example, the switch statement does not include a default label, and is therefore
noncompliant.

Correction — Add default With Error Flag

One possible correction is to use the default label to flag input errors. If your switch-
clauses cover all expected input, then the default cases flags any input errors.

short func1(short xyz){

 switch(xyz){ /* Compliant */

 case 0:

 ++xyz;

 break;

 case 1:

 case 2:

 break;

 default:

 errorflag = 1;

 break;

 }

 if (errorflag == 1)

 return errorflag;

 else

 return xyz;

}

Switch Statement for Enumerated Inputs

enum Colors{

 RED, GREEN, BLUE

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Non-compliant - default label is required */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

 MISRA C:2012 Rule 16.4

8-237

 next = RED;

 break;

 }

 return next;

}

In this example, the switch statement does not include a default label, and is therefore
noncompliant. Even though this switch statement handles all values of the enumeration,
there is no guarantee that color takes one of the those values.

Correction — Add default

To be compliant, add the default label to the end of your switch. You can use this case
to flag unexpected inputs.

enum Colors{

 RED, GREEN, BLUE, ERROR

};

enum Colors func2(enum Colors color){

 enum Colors next;

 switch(color){ /* Compliant */

 case RED:

 next = GREEN;

 break;

 case GREEN:

 next = BLUE;

 break;

 case BLUE:

 next = RED;

 break;

 default:

 next = ERROR;

 break;

 }

 return next;

}

Check Information
Group: Switch Statements

8 MISRA C 2012

8-238

Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 2.1 | MISRA C:2012 Rule 16.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.5

8-239

MISRA C:2012 Rule 16.5
A default label shall appear as either the first or the last switch label of a switch
statement

Description

Rule Definition

A default label shall appear as either the first or the last switch label of a switch
statement.

Rationale

Using this rule, you can easily locate the default label within a switch statement.

Message in Report

A default label shall appear as either the first or the last switch label of a switch
statement.

Examples

Default Case in switch Statements

void foo(int var){

 switch(var){

 default: /* Compliant - default is the first label */

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 }

8 MISRA C 2012

8-240

 switch(var){

 case 0:

 ++var;

 break;

 default: /* Non-compliant - default is mixed with the case labels */

 case 1:

 case 2:

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 default: /* Compliant - default is the last label */

 break;

 }

 switch(var){

 case 0:

 ++var;

 break;

 case 1:

 case 2:

 break;

 default: /* Compliant - default is the last label */

 var = 0;

 break;

 }

}

This example shows the same switch statement several times, each with default in a
different place. As the first, third, and fourth switch statements show, default must be
the first or last label. default can be part of a compound switch-clause (for instance, the
third switch example), but it must be the last listed.

Check Information
Group: Switch Statements
Category: Required

 MISRA C:2012 Rule 16.5

8-241

AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.7 | MISRA C:2012 Rule 16.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-242

MISRA C:2012 Rule 16.6
Every switch statement shall have at least two switch-clauses

Description

Rule Definition

Every switch statement shall have at least two switch-clauses.

Rationale

A switch statement with a single path is redundant and can indicate a programming
error.

Message in Report

Every switch statement shall have at least two switch-clauses.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 16.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 16.7

8-243

MISRA C:2012 Rule 16.7
A switch-expression shall not have essentially Boolean type

Description

Rule Definition

A switch-expression shall not have essentially Boolean type

Rationale

The C Standard requires the controlling expression to a switch statement to have an
integer type. Because C implements Boolean values with integer types, it is possible to
have a Boolean expression control a switch statement. For controlling flow with Boolean
types, an if-else construction is more appropriate.

Polyspace Specification

If your configuration uses the -boolean-types option, the number of reported
violations can increase.

Message in Report

A switch-expression shall not have essentially Boolean type.

Check Information
Group: Switch Statements
Category: Required
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

8 MISRA C 2012

8-244

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 17.1

8-245

MISRA C:2012 Rule 17.1
The features of <starg.h> shall not be used

Description

Rule Definition

The features of <stdarg.h> shall not be used..

Rationale

The rule forbids use of va_list, va_arg, va_start, va_end, and va_copy.

You can use these features in ways where the behavior is not defined in the Standard.
For instance:

• You invoke va_start in a function but do not invoke the corresponding va_end
before the function block ends.

• You invoke va_arg in different functions on the same variable of type va_list.
• va_arg has the syntax type va_arg (va_list ap, type).

You invoke va_arg with a type that is incompatible with the actual type of the
argument retrieved from ap.

Message in Report

The features of <stdarg.h> shall not be used.

Examples

Use of va_start, va_list, va_arg, and va_end

#include<stdarg.h>

void f2(int n, ...) {

8 MISRA C 2012

8-246

 int i;

 double val;

 va_list vl; /* Non-compliant */

 va_start(vl, n); /* Non-compliant */

 for(i = 0; i < n; i++)

 {

 val = va_arg(vl, double); /* Non-compliant */

 }

 va_end(vl); /* Non-compliant */

}

In this example, the rule is violated because va_start, va_list, va_arg and va_end
are used.

Undefined Behavior of va_arg

#include <stdarg.h>

void h(va_list ap) { /* Non-compliant */

 double y;

 y = va_arg(ap, double); /* Non-compliant */

}

void g(unsigned short n, ...) {

 unsigned int x;

 va_list ap; /* Non-compliant */

 va_start(ap, n); /* Non-compliant */

 x = va_arg(ap, unsigned int); /* Non-compliant */

 h(ap);

 /* Undefined - ap is indeterminate because va_arg used in h () */

 x = va_arg(ap, unsigned int); /* Non-compliant */

}

void f(void) {

 /* undefined - uint32_t:double type mismatch when g uses va_arg () */

 g(1, 2.0, 3.0);

 MISRA C:2012 Rule 17.1

8-247

}

In this example, va_arg is used on the same variable ap of type va_list in both
functions g and h. In g, the second argument is unsigned int and in h, the second
argument is double. This type mismatch causes undefined behavior.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-248

MISRA C:2012 Rule 17.2
Functions shall not call themselves, either directly or indirectly

Description

Rule Definition

Functions shall not call themselves, either directly or indirectly.

Rationale

Variables local to a function are stored in the call stack. If a function calls itself
directly or indirectly several times, the available stack space can be exceeded, causing
serious failure. Unless the recursion is tightly controlled, it is difficult to determine the
maximum stack space required.

Message in Report

Message in Report: Function XX shall not call itself either directly or indirectly.
Function XX is called indirectly by YY.

Examples

Direct and Indirect Recursion

void foo1(void) { /* Non-compliant - Indirect recursion foo1->foo2->foo1... */

 foo2();

 foo1(); /* Non-compliant - Direct recursion */

}

void foo2(void) {

 foo1();

}

In this example, the rule is violated because of:

 MISRA C:2012 Rule 17.2

8-249

• Direct recursion foo1 → foo1.
• Indirect recursion foo1 → foo2 → foo1.

Check Information
Group: Function
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-250

MISRA C:2012 Rule 17.3
A function shall not be declared implicitly

Description

Rule Definition

A function shall not be declared implicitly.

Rationale

An implicit declaration occurs when you call a function before declaring or defining
it. When you declare a function explicitly before calling it, the compiler can match the
argument and return types with the parameter types in the declaration. If an implicit
declaration occurs, the compiler makes assumptions about the argument and return
types. For instance, it assumes a return type of int. The assumptions might not agree
with what you expect and cause undesired type conversions.

Message in Report

Function 'XX' has no complete visible prototype at call.

Examples

Function Not Declared Before Call

#include <math.h>

extern double power3 (double val, int exponent);

int getChoice(void);

double func() {

 double res;

 int ch = getChoice();

 if(ch == 0) {

 MISRA C:2012 Rule 17.3

8-251

 res = power(2.0, 10); /* Non-compliant */

 }

 else if(ch==1) {

 res = power2(2.0, 10); /* Non-compliant */

 }

 else {

 res = power3(2.0, 10); /* Compliant */

 return res;

 }

}

double power2 (double val, int exponent) {

 return (pow(val, exponent));

}

In this examples, the rule is violated when a function that is not declared is called in the
code. Even if a function definition exists later in the code, the rule violation occurs.

The rule is not violated when the function is declared before it is called in the code. If the
function definition exists in another file and is available only during the link phase, you
can declare the function in one of the following ways:

• Declare the function with the extern keyword in the current file.
• Declare the function in a header file and include the header file in the current file.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90

See Also
MISRA C:2012 Rule 8.2 | MISRA C:2012 Rule 8.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

8 MISRA C 2012

8-252

• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.4

8-253

MISRA C:2012 Rule 17.4
All exit paths from a function with non-void return type shall have an explicit return
statement with an expression

Description

Rule Definition

All exit paths from a function with non-void return type shall have an explicit return
statement with an expression.

Rationale

If a non-void function does not explicitly return a value but the calling function uses the
return value, the behavior is undefined. To prevent this behavior:

1 You must provide return statements with an explicit expression.
2 You must ensure that during run time, at least one return statement executes.

Message in Report

Missing return value for non-void function 'XX'.

Examples

Missing Return Statement Along Certain Execution Paths

int absolute(int v) {

 if(v < 0) {

 return v;

 }

}

In this example, the rule is violated because a return statement does not exist on all
execution paths. If v >= 0, then the control returns to the calling function without an
explicit return value.

8 MISRA C 2012

8-254

Return Statement Without Explicit Expression

#define SIZE 10

int table[SIZE];

unsigned short lookup(unsigned short v) {

 if((v < 0) || (v > SIZE)) {

 return;

 }

 return table[v];

}

In this example, the rule is violated because the return statement in the if block does
not have an explicit expression.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 15.5

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.5

8-255

MISRA C:2012 Rule 17.5
The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements

Description

Rule Definition

The function argument corresponding to a parameter declared to have an array type shall
have an appropriate number of elements.

Rationale

If you use an array declarator for a function parameter instead of a pointer, the function
interface is clearer because you can state the minimum expected array size. If you do
not state a size, the expectation is that the function can handle an array of any size. In
such cases, the size value is typically another parameter of the function, or the array is
terminated with a sentinel value.

However, it is legal in C to specify an array size but pass an array of smaller size. This
rule prevents you from passing an array of size smaller than the size you declared.

Message in Report

The function argument corresponding to a parameter declared to have an array type
shall have an appropriate number of elements.

The argument type has actual_size elements whereas the parameter type expects
expected_size elements.

Examples

Incorrect Array Size Passed to Function

void func(int arr[4]);

8 MISRA C 2012

8-256

int main() {

 int arrSmall[3] = {1,2,3};

 int arr[4] = {1,2,3,4};

 int arrLarge[5] ={1,2,3,4,5};

 func(arrSmall); /* Non-compliant */

 func(arr); /* Compliant */

 func(arrLarge); /* Compliant */

 return 0;

}

In this example, the rule is violated when arrSmall, which has size 3, is passed to func,
which expects at least 4 elements.

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90. C99

See Also
MISRA C:2012 Rule 17.6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 17.6

8-257

MISRA C:2012 Rule 17.6
The declaration of an array parameter shall not contain the static keyword between the
[]

Description

Rule Definition

The declaration of an array parameter shall not contain the static keyword between the [].

Rationale

If you use the static keyword within [] for an array parameter of a function, you
can inform a C99 compiler that the array contains a minimum number of elements.
The compiler can use this information to generate efficient code for certain processors.
However, in your function call, if you provide less than the specified minimum number,
the behavior is not defined.

Message in Report

The declaration of an array parameter shall not contain the static keyword between the
[].

Examples

Use of static Keyword Within [] in Array Parameter

extern int arr1[20];

extern int arr2[10];

/* Non-compliant: static keyword used in array declarator */

unsigned int total (unsigned int n, unsigned int arr[static 20]) {

 unsigned int i;

 unsigned int sum = 0;

8 MISRA C 2012

8-258

 for (i=0U; i < n; i++) {

 sum+= arr[i];

 }

 return sum;

}

void func (void) {

 int res, res2;

 res = total (10U, arr1); /* Non-compliant - behavior not defined */

 res2 = total (20U, arr2); /* Non-compliant, even if behavior is defined */

}

In this example, the rule is violated when the static keyword is used within [] in the
array parameter of function total. Even if you call total with array arguments where
the behavior is well-defined, the rule violation occurs.

Check Information
Group: Function
Category: Mandatory
AGC Category: Mandatory
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.7

8-259

MISRA C:2012 Rule 17.7
The value returned by a function having non-void return type shall be used

Description

Rule Definition

The value returned by a function having non-void return type shall be used.

Rationale

You can unintentionally call a function with a non-void return type but not use the
return value. Because the compiler allows the call, you might not catch the omission.
This rule forbids calls to a non-void function where the return value is not used. If you
do not intend to use the return value of a function, explicitly cast the return value to
void.

Message in Report

The value returned by a function having non-void return type shall be used.

Examples

Used and Unused Return Values

unsigned int cutOff(unsigned int val) {

 if (val > 10 && val < 100) {

 return val;

 }

 else {

 return 0;

 }

}

unsigned int getVal(void);

8 MISRA C 2012

8-260

void func2(void) {

 unsigned int val = getVal(), res;

 cutOff(val); /* Non-compliant */

 res = cutOff(val); /* Compliant */

 (void)cutOff(val); /* Compliant */

}

In this example, the rule is violated when the return value of cutOff is not used
subsequently.

The rule is not violated when the return value is:

• Assigned to another variable.
• Explicitly cast to void.

Check Information
Group: Function
Category: Required
AGC Category: Readability
Language: C90, C99

See Also
MISRA C:2012 Rule 2.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 17.8

8-261

MISRA C:2012 Rule 17.8
A function parameter should not be modified

Description

Rule Definition

A function parameter should not be modified.

Rationale

When you modify a parameter, the function argument corresponding to the parameter
is not modified. However, you or another programmer unfamiliar with C can expect by
mistake that the argument is also modified when you modify the parameter.

Message in Report

A function parameter should not be modified.

Examples

Function Parameter Modified

int input(void);

void func(int param1, int* param2) {

 param1 = input(); /* Non-compliant */

 param2 = input(); / Compliant */

}

In this example, the rule is violated when the parameter param1 is modified.

The rule is not violated when the parameter is a pointer param2 and *param2 is
modified.

8 MISRA C 2012

8-262

Check Information
Group: Functions
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

 MISRA C:2012 Rule 18.1

8-263

MISRA C:2012 Rule 18.1

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand

Description

Rule Definition

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

Rationale

Using an invalid array subscript can lead to erroneous behavior of the program. Run-
time derived array subscripts are especially troublesome because they cannot be easily
checked by manual review or static analysis.

The C Standard defines the creation of a pointer to one beyond the end of the array. The
rule permits the C Standard. Dereferencing a pointer to one beyond the end of an array
causes undefined behavior and is noncompliant.

Polyspace Specification

Polyspace flags this rule during the analysis as:

• Bug Finder — Array access out-of-bounds and Pointer access out-of-
bounds

• Code Prover — Illegally dereferenced pointer and Out of bounds array
index

Message in Report

A pointer resulting from arithmetic on a pointer operand shall address an element of the
same array as that pointer operand.

8 MISRA C 2012

8-264

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.2

8-265

MISRA C:2012 Rule 18.2
Subtraction between pointers shall only be applied to pointers that address elements of
the same array

Description

Rule Definition

Subtraction between pointers shall only be applied to pointers that address elements of the
same array.

Rationale

This rule applies to expressions of the form pointer_expression1 -
pointer_expression2. The behavior is undefined if pointer_expression1 and
pointer_expression2:

• Do not point to elements of the same array,
• Or do not point to the element one beyond the end of the array.

Message in Report

Subtraction between pointers shall only be applied to pointers that address elements of
the same array.

Examples

Subtracting Pointers

#include <stddef.h>

void f1 (int32_t *ptr)

{

 int32_t a1[10];

8 MISRA C 2012

8-266

 int32_t a2[10];

 int32_t *p1 = &a1[1];

 int32_t *p2 = &a2[10];

 ptrdiff_t diff1, diff2, diff3;

 diff1 = p1 - a1; // Compliant

 diff2 = p2 - a2; // Compliant

 diff3 = p1 - p2; // Non-compliant

}

In this example, the three subtraction expressions show the difference between compliant
and noncompliant pointer subtractions. The diff1 and diff2 subtractions are
compliant because the pointers point to the same array. The diff3 subtraction is not
compliant because p1 and p2 point to different arrays.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1 | MISRA C:2012 Rule 18.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.3

8-267

MISRA C:2012 Rule 18.3
The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object

Description

Rule Definition

The relational operators >, >=, <, and <= shall not be applied to objects of pointer type
except where they point into the same object.

Rationale

If two pointers do not point to the same object, comparisons between the pointers
produces undefined behavior .

You can address the element beyond the end of an array, but you cannot access this
element.

Message in Report

The relational operators >, >=, < and <= shall not be applied to objects of pointer type
except where they point into the same object.

Examples

Pointer and Array Comparisons

void f1(void){

 int arr1[10];

 int arr2[10];

 int *ptr1 = arr1;

 if(ptr1 < arr2){} /* Non-compliant */

 if(ptr1 < arr1){} /* Compliant */

8 MISRA C 2012

8-268

}

In this example, ptr1 is a pointer to arr1. To be compliant with rule 18.3, you can
compare only ptr1 with arr1. Therefore, the comparison between ptr1 and arr2 is
noncompliant.

Structure Comparisons

struct limits{

 int lower_bound;

 int upper_bound;

};

void func2(void){

 struct limits lim_1 = { 2, 5 };

 struct limits lim_2 = { 10, 5 };

 if(&lim_1.lower_bound <= &lim_2.upper_bound){} /* Non-compliant *

 if(&lim_1.lower_bound <= &lim_1.upper_bound){} /* Compliant */

}

This example defines two limits structures, lim1 and lim2, and compares the
elements. To be compliant with rule 18.3, you can compare only the structure
elements within a structure. The first comparison compares the lower_bound of
lim1 and the upper_bound of lim2. This comparison is noncompliant because
the lim_1.lower_bound and lim_2.upper_bound are elements of two different
structures.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.1

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 18.3

8-269

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-270

MISRA C:2012 Rule 18.4

The +, -, += and -= operators should not be applied to an expression of pointer type

Description

Rule Definition

The +, -, += and -= operators should not be applied to an expression of pointer type.

Rationale

The preferred form of pointer arithmetic is using the array subscript syntax ptr[expr].
This syntax is clear and less prone to error than pointer manipulation. With pointer
manipulation, any explicitly calculated pointer value has the potential to access
unintended or invalid memory addresses. Array indexing can also access unintended or
invalid memory, but it is easier to review.

To a new C programmer, the expression ptr+1 can be mistakenly interpreted as one plus
the address of ptr. However, the new memory address depends on the size, in bytes, of
the pointer’s target. This confusion can lead to unexpected behavior.

When used with caution, pointer manipulation using ++ can be more natural (for
instance, sequentially accessing locations during a memory test).

Polyspace Specification

Polyspace flags operations on pointers, for example, Pointer + Integer, Integer +
Pointer, Pointer - Integer.

Message in Report

The +, -, += and -= operators should not be applied to an expression of pointer type.

 MISRA C:2012 Rule 18.4

8-271

Examples

Pointers and Array Expressions

void fun1(void){

 unsigned char arr[10];

 unsigned char *ptr;

 unsigned char index = 0U;

 index = index + 1U; /* Compliant - rule only applies to pointers */

 arr[index] = 0U; /* Compliant */

 ptr = &arr[5]; /* Compliant */

 ptr = arr;

 ptr++; /* Compliant - increment operator not + */

 (ptr + 5) = 0U; / Non-compliant */

 ptr[5] = 0U; /* Compliant */

}

This example shows various operations with pointers and arrays. The only operation in
this example that is noncompliant is using the + operator directly with a pointer (line
12).

Adding Array Elements Inside a for Loop

void fun2(void){

 unsigned char array_2_2[2][2] = {{1U, 2U}, {4U, 5U}};

 unsigned char i = 0U;

 unsigned char j = 0U;

 unsigned char sum = 0U;

 for(i = 0u; i < 2U; i++){

 unsigned char *row = array_2_2[i];

 for(j = 0u; j < 2U; j++){

 sum += row[j]; /* Compliant */

 }

 }

}

In this example, the second for loop uses the array pointer row in an arithmetic
expression. However, this usage is compliant because it uses the array index form.

8 MISRA C 2012

8-272

Pointers and Array Expressions

void fun3(unsigned char *ptr1, unsigned char ptr2[]){

 ptr1++; /* Compliant */

 ptr1 = ptr1 - 5; /* Non-compliant */

 ptr1 -= 5; /* Non-compliant */

 ptr1[2] = 0U; /* Compliant */

 ptr2++; /* Compliant */

 ptr2 = ptr2 + 3; /* Non-compliant */

 ptr2 += 3; /* Non-compliant */

 ptr2[3] = 0U; /* Compliant */

}

This example shows the offending operators used on pointers and arrays. Notice that the
same types of expressions are compliant and noncompliant for both pointers and arrays.

If ptr1 does not point to an array with at least six elements, and ptr2 does not point to
an array with at least 4 elements, this example violates rule 18.1.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 18.1 | MISRA C:2012 Rule 18.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.5

8-273

MISRA C:2012 Rule 18.5
Declarations should contain no more than two levels of pointer nesting

Description

Rule Definition

Declarations should contain no more than two levels of pointer nesting.

Rationale

The use of more than two levels of pointer nesting can seriously impair the ability to
understand the behavior of the code. Avoid this usage.

Message in Report

Declarations should contain no more than two levels of pointer nesting.

Examples

Pointer Nesting

typedef char *INTPTR;

void function(char ** arrPar[]) /* Non-compliant - 3 levels */

{

 char ** obj2; /* Compliant */

 char *** obj3; /* Non-compliant */

 INTPTR * obj4; /* Compliant */

 INTPTR * const * const obj5; /* Non-compliant */

 char ** arr[10]; /* Compliant */

 char ** (*parr)[10]; /* Compliant */

 char * (**pparr)[10]; /* Compliant */

}

8 MISRA C 2012

8-274

struct s{

 char * s1; /* Compliant */

 char ** s2; /* Compliant */

 char *** s3; /* Non-compliant */

};

struct s * ps1; /* Compliant */

struct s ** ps2; /* Compliant */

struct s *** ps3; /* Non-compliant */

char ** (*pfunc1)(void); /* Compliant */

char ** (**pfunc2)(void); /* Compliant */

char ** (***pfunc3)(void); /* Non-compliant */

char *** (**pfunc4)(void); /* Non-compliant */

This example shows various pointer declarations and nesting levels. Any pointer with
more than two levels of nesting is considered noncompliant.

Check Information
Group: Pointers and Arrays
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.6

8-275

MISRA C:2012 Rule 18.6
The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist

Description

Rule Definition

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Rationale

The address of an object becomes indeterminate when the lifetime of that object expires.
Any use of an indeterminate address results in undefined behavior.

Polyspace Specification

Polyspace flags a violation when assigning an address to a global variable, returning a
local variable address, or returning a parameter address.

Message in Report

The address of an object with automatic storage shall not be copied to another object that
persists after the first object has ceased to exist.

Examples

Address of Local Variables

char *func(void){

 char local_auto;

 return &local_auto /* Non-compliant

8 MISRA C 2012

8-276

 * &local_auto is indeterminate */

}

In this example, because local_auto is a local variable, after the function returns, the
address of local_auto is indeterminate.

Copying Pointer Addresses to Local Variables

char *sp;

void f(unsigned short u){

 g(&u);

}

void g(unsigned short *p){

 sp = p; /* Non-compliant

 * the parameter u from f is copied to static sp */

}

void h(void){

 static unsigned short *q;

 unsigned short x =0u;

 q = &x; /* Non-compliant -

 * &x stored in object with greater lifetime */

}

In this example, the function g stores a copy of its pointer parameter p. If p always
points to an object with static storage duration, then the code is compliant with this rule.
However, in this example , p points to an object with automatic storage duration. In such
a case, copying the parameter p is noncompliant.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 18.6

8-277

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-278

MISRA C:2012 Rule 18.7
Flexible array members shall not be declared

Description

Rule Definition

Flexible array members shall not be declared.

Rationale

Flexible array members are usually used with dynamic memory allocation. Dynamic
memory allocation is banned by Directive 4.12 and Rule 21.3.

Message in Report

Flexible array members shall not be declared.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 21.3

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 18.8

8-279

MISRA C:2012 Rule 18.8
Variable-length array types shall not be used

Description

Rule Definition

Variable-length array types shall not be used.

Rationale

When the size of an array declared in a block or function prototype is not an integer
constant expression, you specify variable array types. Variable array types are typically
implemented as a variable size object stored on the stack. Using variable type arrays
can make it impossible to determine statistically the amount of memory for the stack
requires.

If the size of a variable-length array is negative or zero, the behavior is undefined.

If a variable-length array must be compatible with another array type, then the size of
the array types must be identical and positive integers. If your array does not meet these
requirements, the behavior is undefined.

If you use a variable-length array type in a sizeof, it is uncertain if the array size is
evaluated or not.

Message in Report

Variable-length array types shall not be used.

Check Information
Group: Pointers and Arrays
Category: Required
AGC Category: Required
Language: C99

8 MISRA C 2012

8-280

See Also
MISRA C:2012 Rule 13.6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 19.1

8-281

MISRA C:2012 Rule 19.1
An object shall not be assigned or copied to an overlapping object

Description

Rule Definition

An object shall not be assigned or copied to an overlapping object.

Rationale

When you assign an object to another object with overlapping memory, the behavior is
undefined. The exceptions are:

• You assign an object to another object with exactly overlapping memory and
compatible type.

• You copy one object to another using memmove.

Message in Report

• An object shall not be assigned or copied to an overlapping object.
• Destination and source of XX overlap, the behavior is undefined.

Examples

Assignment of Unions

void func (void) {

 union {

 short i;

 int j;

 } a = {0}, b = {1};

 a.j = a.i; /* Non-compliant */

8 MISRA C 2012

8-282

 a = b; /* Compliant */

}

In this example, the rule is violated when a.i is assigned to a.j because the two
variables have overlapping regions of memory.

Assignment of Array Segments

#include <string.h>

int arr[10];

void func(void) {

 memcpy (&arr[5], &arr[4], 2u * sizeof(arr[0])); /* Non-compliant */

 memcpy (&arr[5], &arr[4], sizeof(arr[0])); /* Compliant */

 memcpy (&arr[1], &arr[4], 2u * sizeof(arr[0])); /* Compliant */

}

In this example, memory equal to twice sizeof(arr[0]) is the memory space taken
up by two array elements. If that memory space begins from &a[4] and &a[5], the two
memory regions overlap. The rule is violated when the memcpy function is used to copy
the contents of these two overlapping memory regions.

Check Information
Group: Overlapping Storage
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.2

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 19.1

8-283

Introduced in R2014b

8 MISRA C 2012

8-284

MISRA C:2012 Rule 19.2
The union keyword should not be used

Description

Rule Definition

The union keyword should not be used.

Rationale

If you write to a union member and read the same union member, the behavior is well-
defined. But if you read a different member, the behavior depends on the relative sizes of
the members. For instance:

• If you read a union member with wider memory size, the value you read is
unspecified.

• Otherwise, the value is implementation-dependant.

Message in Report

The union keyword should not be used.

Examples

Possible Problems with union Keyword

unsigned int zext(unsigned int s)

{

 union /* Non-compliant */

 {

 unsigned int ul;

 unsigned short us;

 } tmp;

 MISRA C:2012 Rule 19.2

8-285

 tmp.us = s;

 return tmp.ul; /* Unspecified value */

}

In this example, the 16-bit short field tmp.us is written but the wider 32-bit int
field tmp.ul is read. Using the union keyword can cause such unspecified behavior.
Therefore, the rule forbids using the union keyword.

Check Information
Group: Overlapping Storage
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 19.1

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-286

MISRA C:2012 Rule 20.1
#include directives should only be preceded by preprocessor directives or comments

Description

Rule Definition

#include directives should only be preceded by preprocessor directives or comments.

Rationale

For better code readability, group all #include directives in a file at the top of the
file. Undefined behavior can occur if you use #include to include a standard header
file within a declaration or definition, or if you use part of the Standard Library before
including the related standard header files.

Polyspace Specification

Polyspace flags text that precedes a #include directive. Polyspace ignores preprocessor
directives, comments, spaces, or "new lines".

Message in Report

#include directives should only be preceded by preprocessor directives or comments.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 20.1

8-287

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-288

MISRA C:2012 Rule 20.2
The', "or \characters and the /* or //character sequences shall not occur in a header file
name

Description

Rule Definition

The', "or \characters and the /* or //character sequences shall not occur in a header file
name.

Rationale

The program’s behavior is undefined if:

• You use ', ", \, /* or // between < > delimiters in a header name preprocessing
token.

• You use ', \, /* or // between " delimiters in a header name preprocessing token.

Although \ results in undefined behavior, many implementations accept / in its place.

Polyspace Specification

Polyspace flags the characters ', ", \, /* or // between < and > in #include
<filename>.

Polyspace flags the characters ', \, /* or // between " and " in #include
"filename".

Message in Report

The ', "or \ characters and the /* or // character sequences shall not occur in a header file
name.

Check Information
Group: Preprocessing Directives

 MISRA C:2012 Rule 20.2

8-289

Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-290

MISRA C:2012 Rule 20.3
The #include directive shall be followed by either a <filename> or \"filename\" sequence

Description

Rule Definition

The #include directive shall be followed by either a <filename> or \"filename\" sequence.

Rationale

This rule applies only after macro replacement.

The behavior is undefined if an #include directive does not use one of the following
forms:

• #include <filename>

• #include "filename"

Message in Report

• ‘#include' expects \"FILENAME\" or <FILENAME>
• ‘#include_next' expects \"FILENAME\" or <FILENAME>
• ‘#include' does not expect string concatenation.
• ‘#include_next' does not expect string concatenation.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 20.3

8-291

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-292

MISRA C:2012 Rule 20.4
A macro shall not be defined with the same name as a keyword

Description

Rule Definition

A macro shall not be defined with the same name as a keyword.

Rationale

Using macros to change the meaning of keywords can be confusing. The behavior is
undefined if you include a standard header while a macro is defined with the same name
as a keyword.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.

Examples

Redefining int keyword

#define int some_other_type

 /* Non-compliant - int keyword behavior altered */

#include <stdlib.h>

...

In this example, the #define violates Rule 20.4 because it alters the behavior of the int
keyword. The inclusion of the standard header results in undefined behavior.

Correction — Rename keyword

One possible correction is to use a different keyword:

 MISRA C:2012 Rule 20.4

8-293

#define int_mine some_other_type

#include <stdlib.h>

...

Redefining keywords versus statements

#define while(E) for (; (E) ;) /* Non-compliant - while redefined*/

#define unless(E) if (!(E)) /* Compliant*/

#define seq(S1, S2) do{ S1; S2;} while(false) /* Compliant*/

#define compound(S) {S;} /* Compliant*/

...

In this example, it is noncompliant to redefine the keyword while, but it is compliant to
define a macro that expands to statements.

Redefining keywords in different standards

#define inline

In this example, redefining inline is compliant in C90, but not in C99 because inline
is not a keyword in C90.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 21.1

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-294

MISRA C:2012 Rule 20.5
#undef should not be used

Description

Rule Definition

#undef should not be used.

Rationale

#undef can make the software unclear which macros exist at a particular point within a
translation unit.

Message in Report

#undef shall not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Readability
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.6

8-295

MISRA C:2012 Rule 20.6
Tokens that look like a preprocessing directive shall not occur within a macro argument

Description

Rule Definition

Tokens that look like a preprocessing directive shall not occur within a macro argument.

Rationale

An argument containing sequences of tokens that otherwise act as preprocessing
directives leads to undefined behavior.

Polyspace Specification

Polyspace looks for the # character in a macro arguments (outside a string or character
constant).

Message in Report

Macro argument shall not look like a preprocessing directive.

Examples

Macro Expansion Causing Non-Compliance

#define M(A) printf (#A)

#include <stdio.h>

void foo(void){

 M(

#ifdef SW /* Non-compliant */

8 MISRA C 2012

8-296

 "Message 1"

#else

 "Message 2" /* Compliant - SW not defined */

#endif /* Non-compliant */

);

}

This example shows a macro definition and the macro usage. #ifdef SW and #endif
are noncompliant because they look like a preprocessing directive. Polyspace does not
flag #else "Message 2" because after macro expansion, Polyspace knows SW is not
defined. The expanded macro is printf ("\"Message 2\"");

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.7

8-297

MISRA C:2012 Rule 20.7
Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses

Description

Rule Definition

Expressions resulting from the expansion of macro parameters shall be enclosed in
parentheses.

Rationale

If you do not use parentheses , then it is possible that operator precedence does not give
the results that you want when macro substitution occurs.

If you are not using a macro parameter as an expression, then the parentheses are not
necessary because no operators are involved in the macro.

Message in Report

Expanded macro parameter param shall be enclosed in parentheses.

Examples

Macro Expressions

#define mac1(x, y) (x * y)

#define mac2(x, y) ((x) * (y))

void foo(void){

 int r;

 r = mac1(1 + 2, 3 + 4); /* Non-compliant */

 r = mac1((1 + 2), (3 + 4)); /* Compliant */

8 MISRA C 2012

8-298

 r = mac2(1 + 2, 3 + 4); /* Compliant */

}

In this example, mac1 and mac2 are two defined macro expressions. The definition of
mac1 does not enclose the arguments in parentheses. In line 7, the macro expands to
r = (1 + 2 * 3 + 4); This expression can be (1 + (2 * 3) + 4) or (1 + 2)
* (3 + 4). However, without parentheses, the program does not know the intended
expression. Line 8 uses parentheses, so the line expands to (1 + 2) * (3 + 4). This
macro expression is compliant.

The definition of mac2 does enclose the argument in parentheses. Line 10 (the same
macro arguments in line 7) expands to (1 + 2) * (3 + 4). This macro and macro
expression are compliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.8

8-299

MISRA C:2012 Rule 20.8
The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1

Description

Rule Definition

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Rationale

Strong typing requires that conditional inclusion preprocessing directives, #if or #elif,
have a controlling expression that evaluates to a Boolean value.

Message in Report

The controlling expression of a #if or #elif preprocessing directive shall evaluate to 0 or 1.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 14.4

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-300

MISRA C:2012 Rule 20.9
All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation

Description

Rule Definition

All identifiers used in the controlling expression of #if or #elif preprocessing directives
shall be #define’d before evaluation.

Rationale

If attempt to use a macro identifier in a preprocessing directive, and you have not defined
that identifier, then the preprocessor assumes that it has a value of zero. This value
might not meet developer expectations.

Message in Report

Identifier is not defined.

Examples

Macro Identifiers

#if M == 0 /* Non-compliant - Not defined */

#endif

#if defined (M) /* Compliant - M is not evaluate */

#if M == 0 /* Compliant - M is known to be defined */

#endif

#endif

#if defined (M) && (M == 0) /* Compliant

 * if M defined, M evaluated in (M == 0) */

 MISRA C:2012 Rule 20.9

8-301

#endif

This example shows various uses of M in preprocessing directives. The second and third
#if clauses check to see if the software defines M before evaluating M. The first #if
clause does not check to see if M is defined, and because M is not defined, the statement is
noncompliant.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Directive 4.9

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-302

MISRA C:2012 Rule 20.10
The# and ## preprocessor operators should not be used

Description

Rule Definition

The# and ## preprocessor operators should not be used.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators is unspecified. In some cases, it is therefore not possible to predict
the result of macro expansion.

The use of ## can result in obscured code.

Message in Report

The # and ## preprocessor operators should not be used.

Check Information
Group: Preprocessing Directives
Category: Advisory
AGC Category: Advisory
Language: C90, C99

See Also
MISRA C:2012 Rule 1.3 | MISRA C:2012 Rule 20.11

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 20.10

8-303

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-304

MISRA C:2012 Rule 20.11
A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator

Description

Rule Definition

A macro parameter immediately following a # operator shall not immediately be followed
by a ## operator.

Rationale

The order of evaluation associated with multiple #, multiple ##, or a mix of # and ##
preprocessor operators, is unspecified. Rule 20.10 discourages the use of # and ##. The
result of a # operator is a string literal. It is extremely unlikely that pasting this result to
any other preprocessing token results in a valid token.

Message in Report

The ## preprocessor operator shall not follow a macro parameter following a #
preprocessor operator.

Examples

Use of # and ##

#define A(x) #x /* Compliant */

#define B(x, y) x ## y /* Compliant */

#define C(x, y) #x ## y /* Non-compliant */

In this example, you can see three uses of the # and ## operators. You can use these
preprocessing operators alone (line 1 and line 2), but using # then ## is noncompliant
(line 3).

 MISRA C:2012 Rule 20.11

8-305

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 20.10

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

8 MISRA C 2012

8-306

MISRA C:2012 Rule 20.12
A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators

Description

Rule Definition

A macro parameter used as an operand to the # or ## operators, which is itself subject to
further macro replacement, shall only be used as an operand to these operators.

Rationale

The parameter to # or ## is not expanded prior to being used. The same parameter
appearing elsewhere in the replacement text is expanded. If the macro parameter is
itself subject to macro replacement, its use in mixed contexts within a macro replacement
might not meet developer expectations.

Message in Report

Expanded macro parameter param1 is also an operand of op operator.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.13

8-307

MISRA C:2012 Rule 20.13
A line whose first token is # shall be a valid preprocessing directive

Description

Rule Definition

A line whose first token is # shall be a valid preprocessing directive

Rationale

You can use a preprocessing directive to conditionally exclude source code until it
encounters a corresponding #else, #elif, #endif directive. If your compiler does not
detect a malformed or invalid preprocessing directive inside excluded source code, more
code than you intended to excluded.

If all preprocessing directives are syntactically valid, even in excluded code, this
unintended code exclusion cannot happen.

Message in Report

Directive is not syntactically meaningful.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”

8 MISRA C 2012

8-308

• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 20.14

8-309

MISRA C:2012 Rule 20.14
All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related

Description

Rule Definition

All #else, #elif and #endif preprocessor directives shall reside in the same file as the #if,
#ifdef or #ifndef directive to which they are related.

Rationale

When conditional compilation directives include or exclude blocks of code and are spread
over multiple files, confusion arises. If you terminate an #if directive within the same
file, you reduce the visual complexity of the code and the chances of an error.

If you terminate #if directives within the same file, you can use #if directives in
included files

Message in Report

• ‘#else' not within a conditional.
• ‘#elsif' not within a conditional.
• ‘#endif' not within a conditional. unterminated conditional directive.

Check Information
Group: Preprocessing Directives
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

8 MISRA C 2012

8-310

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

 MISRA C:2012 Rule 21.1

8-311

MISRA C:2012 Rule 21.1
#define and #undef shall not be used on a reserved identifier or reserved macro name

Description

Rule Definition

#define and #undef shall not be used on a reserved identifier or reserved macro name.

Rationale

Reserved identifiers and reserved macro names are intended for use by the
implementation. Removing or changing the meaning of a reserved macro can result in
undefined behavior. This rule applies to the following:

• Identifiers or macro names beginning with an underscore
• Identifiers in file scope described in the C Standard Library
• Macro names described in the C Standard Library as being defined in a standard

header.

Message in Report

• The macro macro_name shall not be redefined.
• The macro macro_name shall not be undefined.
• The macro macro_name shall not be defined.

Examples

Defining or Undefining Reserved Identifiers

#undef __LINE__ /* Non-compliant - begins with _ */

#define _Guard_H 1 /* Non-compliant - begins with _ */

#undef _ BUILTIN_squrt /* Non-compliant - implementation may

8 MISRA C 2012

8-312

 * use _BUILTIN_sqrt for other purposes,

 * e.g. generating a sqrt instruction */

#define defined /* Non-compliant - reserved identifier */

#define errno my_errno /* Non-compliant - library identifier */

#define isneg(x) ((x) < 0) /* Compliant - rule doesn't include

 * future library directions */

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Languages: C90, C99

See Also
MISRA C:2012 Rule 20.4

More About
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.2

8-313

MISRA C:2012 Rule 21.2
A reserved identifier or macro name shall not be declared

Description

Rule Definition

A reserved identifier or macro name shall not be declared.

Rationale

The Standard allows implementations to treat reserved identifiers specially. If you reuse
reserved identifiers, you can cause undefined behavior.

Polyspace Specification

• If you define a macro name that corresponds to a standard library macro, object, or
function, rule 21.1 is violated.

• The rule considers tentative definitions as definitions.

Polyspace Specification

Message in Report

Identifier 'XX' shall not be reused.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

8 MISRA C 2012

8-314

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

 MISRA C:2012 Rule 21.3

8-315

MISRA C:2012 Rule 21.3
The memory allocation and deallocation functions of <stdlib.h> shall not be used

Description

Rule Definition

The memory allocation and deallocation functions of <stdlib.h> shall not be used.

Rationale

Using memory allocation and deallocation routines can cause undefined behavior. For
instance:

• You free memory that you had not allocated dynamically.
• You use a pointer that points to a freed memory location.

Polyspace Specification

If you use names of dynamic heap memory allocation functions for macros, and you
expand the macros in the code, this rule is violated. It is assumed that rule 21.2 is not
violated.

Message in Report

• The macro <name> shall not be used.
• Identifier XX should not be used.

Examples

Use of malloc, calloc, realloc and free

#include <stdlib.h>

8 MISRA C 2012

8-316

static int foo(void);

typedef struct struct_1 {

 int a;

 char c;

} S_1;

static int foo(void) {

 _S_1 * ad_1;

 int * ad_2;

 int * ad_3;

 ad_1 = (S_1*)calloc(100U, sizeof(S_1)); /* Non-compliant */

 ad_2 = malloc(100U * sizeof(int)); /* Non-compliant */

 ad_3 = realloc(ad_3, 60U * sizeof(long)); /* Non-compliant */

 free(ad_1); /* Non-compliant */

 free(ad_2); /* Non-compliant */

 free(ad_3); /* Non-compliant */

 return 1;

}

In this example, the rule is violated when the functions malloc, calloc, realloc and
free are used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

See Also
MISRA C:2012 Rule 18.7

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.3

8-317

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-318

MISRA C:2012 Rule 21.4
The standard header file <setjmp.h> shall not be used

Description

Rule Definition

The standard header file <setjmp.h> shall not be used.

Rationale

Using setjmp and longjmp, you can bypass normal function call mechanisms and cause
undefined behavior.

Polyspace Specification

If the longjmp function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.4

8-319

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-320

MISRA C:2012 Rule 21.5
The standard header file <signal.h> shall not be used

Description

Rule Definition

The standard header file <signal.h> shall not be used.

Rationale

Using signal handling functions can cause implementation-defined and undefined
behavior.

Polyspace Specification

If the signal function is a macro and the macro is expanded in the code, this rule is
violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.5

8-321

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-322

MISRA C:2012 Rule 21.6
The Standard Library input/output functions shall not be used

Description

Rule Definition

The Standard Library input/output functions shall not be used.

Rationale

This rule applies to the functions that are provided by <stdio.h> and in C99, their
character-wide equivalents provided by <wchar.h>. Using these functions can cause
unspecified, undefined and implementation-defined behavior.

Polyspace Specification

If the Standard Library function is a macro and the macro is expanded in the code, this
rule is violated. It is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 21.6

8-323

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-324

MISRA C:2012 Rule 21.7
The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used

Description

Rule Definition

The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.

Rationale

When a string cannot be converted, the behavior of these functions can be undefined.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.7

8-325

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-326

MISRA C:2012 Rule 21.8
The library functions abort, exit, getenv and system of <stdlib.h> shall not be used

Description

Rule Definition

The library functions abort, exit, getenv and system of <stdlib.h> shall not be used.

Rationale

Using these functions can cause undefined and implementation-defined behaviors.

Polyspace Specification

In case the abort, exit, getenv, and system functions are actually macros, and the macros
are expanded in the code, this rule is detected as violated. It is assumed that rule 21.2 is
not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.8

8-327

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-328

MISRA C:2012 Rule 21.9
The library functions bsearch and qsort of <stdlib.h> shall not be used

Description

Rule Definition

The library functions bsearch and qsort of <stdlib.h> shall not be used.

Rationale

The comparison function in these library functions can behave inconsistently when the
elements being compared are equal. Also, the implementation of qsort can be recursive
and place unknown demands on the call stack.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”

 MISRA C:2012 Rule 21.9

8-329

• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-330

MISRA C:2012 Rule 21.10
The Standard Library time and date functions shall not be used

Description

Rule Definition

The Standard Library time and date functions shall not be used.

Rationale

Using these functions can cause unspecified, undefined and implementation-defined
behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”

 MISRA C:2012 Rule 21.10

8-331

• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-332

MISRA C:2012 Rule 21.11
The standard header file <tgmath.h> shall not be used

Description

Rule Definition

The standard header file <tgmath.h> shall not be used.

Rationale

Using the facilities of this header file can cause undefined behavior.

Polyspace Specification

If the function is a macro and the macro is expanded in the code, this rule is violated. It
is assumed that rule 21.2 is not violated.

Message in Report

• The macro '<name> shall not be used.
• Identifier XX should not be used.

Examples

Use of Function in tgmath.h

#include <tgmath.h>

float f1,res;

void func(void) {

 res = sqrt(f1); /* Non-compliant */

 MISRA C:2012 Rule 21.11

8-333

}

In this example, the rule is violated when the sqrt macro defined in tgmath.h is used.

Correction — Use Appropriate Function in math.h

For this example, one possible correction is to use the function sqrtf defined in math.h
for float arguments.

#include <math.h>

float f1, res;

void func(void) {

 res = sqrtf(f1);

}

Check Information
Group: Standard Libraries
Category: Required
AGC Category: Required
Language: C90, C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2014b

8 MISRA C 2012

8-334

MISRA C:2012 Rule 21.12
The exception handling features of <fenv.h> should not be used

Description

Rule Definition

The exception handling features of <fenv.h> should not be used.

Rationale

In some cases, the values of the floating-point status flags are unspecified. Attempts to
access them can cause undefined behavior.

Message in Report

The exception handling features of <fenv.h> should not be used

Examples

Use of Features in <fenv.h>

#include <fenv.h>

void func(float x, float y) {

 float z;

 feclearexcept(FE_DIVBYZERO); /* Non-compliant */

 z = x/y;

 if(fetestexcept (FE_DIVBYZERO)) { /* Non-compliant */

 }

 else {

#pragma STDC FENV_ACCESS ON

 z=x*y;

 MISRA C:2012 Rule 21.12

8-335

 if(z>x) {

#pragma STDC FENV_ACCESS OFF

 if(fetestexcept (FE_OVERFLOW)) { /* Non-compliant */

 }

 }

 }

}

In this example, the rule is violated when the identifiers feclearexcept and
fetestexcept, and the macros FE_DIVBYZERO and FE_OVERFLOW are used.

Check Information
Group: Standard libraries
Category: Advisory
AGC Category: Advisory
Language: C99

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

8 MISRA C 2012

8-336

MISRA C:2012 Rule 22.5
A pointer to a FILE object shall not be dereferenced

Description

Rule Definition

A pointer to a FILE object shall not be dereferenced.

Rationale

The Standard states that the address of a FILE object used to control a stream can be
significant. Copying that object might not give the same behavior. This rule ensures that
you cannot perform such a copy.

Directly manipulating a FILE object might be incompatible with its use as a stream
designator.

Message in Report

A pointer to a FILE object shall not be dereferenced

Examples

FILE* Pointer Dereferenced

#include <stdio.h>

void func(void) {

 FILE *pf1;

 FILE *pf2;

 FILE f3;

 pf2 = pf1; /* Compliant */

 f3 = *pf2; /* Non-compliant */

 MISRA C:2012 Rule 22.5

8-337

 pf2->_flags=0; /* Non-compliant */

 }

In this example, the rule is violated when the FILE* pointer pf2 is dereferenced.

Check Information
Group: Resources
Category: Mandatory
AGC Category: Mandatory
Language: C90, C99

See Also
MISRA C:2012 Rule 21.6

More About
• “Set Up Coding Rules Checking”
• “Review Coding Rule Violations”
• “Polyspace MISRA C:2012 Checker”
• “Software Quality Objective Subsets (C:2012)”

Introduced in R2015b

9

Code Metrics

9 Code Metrics

9-2

Comment Density
Ratio of number of comments to number of statements

Description

The metric specifies the ratio of comments to statements expressed as a percentage.

Multi-line comments are counted as one comment. A statement typically ends with
a semi-colon with some exceptions. Exceptions include semi-colons in for loops or
structure field declarations.

The recommended lower limit for this metric is 20. For better readability of your code, try
to place at least one comment for every five statements.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Comment Density Calculation

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

struct record dataBase[100];

struct record fetch(void);

void remove(int);

void maintenanceRoutines() {

// This function implements

// regular maintenance on an internal database

 Comment Density

9-3

 int i;

 struct record tempRecord;

 for(i=0; i <100; i++) {

 tempRecord = fetch(); // This function fetches a record

 // from the database

 if(tempRecord.isEmployed == 0)

 remove(i); // Remove employee record

 //from the database

 }

}

In this example, the comment density is 38. The calculation is done as follows:

Code Running Total
of Comments

Running Total
of Statements

struct record {

 char name[40];

 long double salary;

 int isEmployed;

};

0 1

struct record dataBase[100];

struct record fetch(void);

void remove(int);

0 4

void maintenanceRoutines() { 0 4
// This function implements

// regular maintenance on an internal database
1 4

int i;

struct record tempRecord;
1 6

for(i=0; i <100; i++) { 1 6
 tempRecord = fetch(); // This

 function fetches a record

 // from the database

2 7

if(tempRecord.isEmployed == 0)

 remove(i);

 // Remove employee record

 //from the database

 }

}

3 8

9 Code Metrics

9-4

There are 3 comments and 8 statements. The comment density is 3/8*100 = 38.

Metric Information
Group: File
Acronym: COMF
HIS Metric: Yes

 Cyclomatic Complexity

9-5

Cyclomatic Complexity
Number of linearly independent paths through source code

Description

This metric specifies the number of linearly independent paths through the source code.

To calculate this metric, add 1 to the number of decision points in your code. A decision
point is a statement that causes your program to branch into two paths. For example, at
an if statement, your program can either enter the if branch or not.

The recommended upper limit for this metric is 10. If the cyclomatic complexity is high,
the code is both difficult to read and can cause more orange checks. Therefore, try to limit
the value of this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag;

 if (x <= 0)

 /* Decision point 1*/

 flag = 1;

 else

 {

 if (x < y)

 /* Decision point 2*/

 flag = 1;

 else if (x==y)

9 Code Metrics

9-6

 /* Decision point 3*/

 flag = 0;

 else

 flag = -1;

 }

 return flag;

}

In this example, the cyclomatic complexity of foo is 4.

Function with ? Operator

int foo (int x, int y) {

 if((x <0) ||(y < 0))

 /* Decision point 1*/

 return 0;

 else

 return (x > y ? x: y);

 /* Decision point 2*/

}

In this example, the cyclomatic complexity of foo is 3. The ? operator is the second
decision point.

Function with switch Statement

#include <stdio.h>

int foo(int x,int y, int ch)

{

 int val = 0;

 switch(ch) {

 case 1:

 /* Decision point 1*/

 val = x + y;

 break;

 case 2:

 /* Decision point 2*/

 val = x - y;

 break;

 default:

 printf("Invalid choice.");

 }

 Cyclomatic Complexity

9-7

 return val;

}

In this example, the cyclomatic complexity of foo is 3.

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Decision point 1*/

 count = 1;

 else

 while(x>y) {

 /* Decision point 2*/

 x--;

 if(count< bound) {

 /* Decision point 3*/

 count++;

 }

 }

 return count;

}

In this example, the cyclomatic complexity of foo is 4.

Metric Information
Group: Function
Acronym: VG
HIS Metric: Yes

9 Code Metrics

9-8

Estimated Function Coupling

Measure of complexity between levels of call tree

Description

This metric is defined as (number of call occurrences – number of function definitions +
1). The metric provides an approximate measure of complexity between different levels of
the call tree.

Examples

Same Function Called Multiple Times

void checkBounds(int *);

int getUnboundedValue();

int getBoundedValue(void) {

 int num = getUnboundedValue();

 checkBounds(&num);

 return num;

}

void main() {

 int input1=getBoundedValue(), input2= getBoundedValue(), prod;

 prod = input1 * input2;

 checkBounds(&prod);

}

In this example, there are:

• 5 call occurrences. Both getBoundedValue and checkBounds are called twice and
getUnboundedValue is called once.

• 2 function definitions. main and getBoundedValue are defined.

Therefore, the estimated function coupling is 5 – 2 + 1 = 4.

 Estimated Function Coupling

9-9

Metric Information
Group: File
Acronym: FCO
HIS Metric: No

See Also
Number of Call Occurrences

9 Code Metrics

9-10

Language Scope
Language scope

Description

This metric measures the cost of maintaining or changing a function. It is calculated as:

(N1 + N2)/(n1 + n2)

Here:

• N1 is the number of occurrences of operators.
• N2 is the number of occurrences of operands.
• n1 is the number of distinct operators.
• n2 is the number of distinct operands.

The recommended upper limit for this metric is 10. For lower maintenance cost for a
function, try to enforce an upper limit on this metric. For instance, if the same operand
occurs many times, to change the operand name, you have to make many substitutions.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Language Scope Calculation

int f(int i)

{

 if (i == 1)

 return i;

 else

 return i * g(i-1);

}

 Language Scope

9-11

In this example:

• N1 = 17.
• N2 = 9.
• n1 = 12.

The distinct operators are int, (,), {, if, ==, return, else, *, -, ;, }.
• n2 = 4.

The distinct operands are f, i, 1 and g.

The language scope of f is (17 + 9) / (12 + 4) = 1.8.

Metric Information
Group: Function
Acronym: VOCF
HIS Metric: Yes

9 Code Metrics

9-12

Number of Call Levels
Maximum depth of nesting of control flow structures

Description

This metric specifies the maximum nesting depth of control flow statements such as if,
switch, for, or while in a function. A function with no control-flow statements has a
call level 1.

The recommended upper limit for this metric is 4. For better readability of your code, try
to enforce an upper limit for this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Function with Nested if Statements

int foo(int x,int y)

{

 int flag = 0;

 if (x <= 0)

 /* Call level 1*/

 flag = 1;

 else

 {

 if (x <= y)

 /* Call level 2*/

 flag = 1;

 else

 flag = -1;

 }

 return flag;

 Number of Call Levels

9-13

}

In this example, the number of call levels of foo is 2.

Function with Nesting of Different Control-Flow Statements

int foo(int x,int y, int bound)

{

 int count = 0;

 if (x <= y)

 /* Call level 1*/

 count = 1;

 else

 while(x>y) {

 /* Call level 2*/

 x--;

 if(count< bound) {

 /* Call level 3*/

 count++;

 }

 }

 return count;

}

In this example, the number of call levels of foo is 3.

Metric Information
Group: Function
Acronym: LEVEL
HIS Metric: Yes

9 Code Metrics

9-14

Number of Call Occurrences
Number of calls in function body

Description

This metric specifies the number of function calls in the body of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of call occurrences in foo is 4.

Function Called in a Loop

#include<stdio.h>

void fillArraySize10(int *arr) {

 for(int i=0; i<10; i++)

 arr[i]=getVal();

}

int getVal(void) {

 int val;

 printf("Enter a value:");

 scanf("%d", &val);

 return val;

 Number of Call Occurrences

9-15

}

In this example, the number of call occurrences in fillArraySize10 is 1.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of call occurrences in fibonacci is 2.

Metric Information
Group: Function
Acronym: NCALLS
HIS Metric: No

See Also
Number of Called Functions

9 Code Metrics

9-16

Number of Called Functions
Number of callees of a function

Description

This metric specifies the number of callees of a function.

Calls through a function pointer are not counted. Calls in unreachable code and calls to
standard library functions are counted.

The recommended upper limit for this metric is 7. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Same Function Called Multiple Times

int func1(void);

int func2(void);

int foo() {

 return (func1() + func1()*func1() + 2*func2());

}

In this example, the number of called functions in foo is 2. The called functions are
func1 and func2.

Recursive Function

#include <stdio.h>

 Number of Called Functions

9-17

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of called functions in fibonacci is 1. The called function is
fibonacci itself.

Metric Information
Group: Function
Acronym: CALLS
HIS Metric: Yes

See Also
Number of Call Occurrences | Number of Calling Functions

9 Code Metrics

9-18

Number of Calling Functions
Number of distinct callers of a function

Description

This metric measures the number of distinct callers of a function.

Calls through a function pointer are not counted. Calls in unreachable code are counted.
Even if a caller calls a function more than once, it is counted only once when this metric
is calculated.

The recommended upper limit for this metric is 5. For more self-contained code, try to
enforce an upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Same Function Calling a Function Multiple Times

#include <stdio.h>

int getVal() {

 int myVal;

 printf("Enter a value:");

 scanf("%d", &myVal);

 return myVal;

}

int func() {

 int val=getVal();

 if(val<0)

 return 0;

 else

 Number of Calling Functions

9-19

 return val;

}

int func2() {

 int val=getVal();

 while(val<0)

 val=getVal();

 return val;

}

In this example, the number of calling functions for getVal is 2. The calling functions
are func and func2.

Recursive Function

#include <stdio.h>

void main() {

 int count;

 printf("How many numbers ?");

 scanf("%d",&count);

 fibonacci(count);

}

int fibonacci(int num)

{

 if (num == 0)

 return 0;

 else if (num == 1)

 return 1;

 else

 return (fibonacci(num-1) + fibonacci(num-2));

}

In this example, the number of calling functions for fibonacci is 2. The calling
functions are main and fibonacci itself.

Metric Information
Group: Function
Acronym: CALLING
HIS Metric: Yes

9 Code Metrics

9-20

See Also
Number of Called Functions

 Number of Direct Recursions

9-21

Number of Direct Recursions
Number of instances of a function calling itself directly

Description

This metric specifies the number of direct recursions in your project.

A direct recursion is a recursion where a function calls itself in its own body. If no
indirect recursions occur, the number of direct recursions is equal to the number of
recursive functions.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics, see “Compare Metrics Against Software Quality Objectives”.

Note: This metric is available only in the Polyspace Metrics web interface.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

9 Code Metrics

9-22

}

In this example, the number of direct recursions is 1.

Metric Information
Group: Project
Acronym: AP_CG_DIRECT_CYCLE
HIS Metric: Yes

 Number of Executable Lines

9-23

Number of Executable Lines
Number of executable lines in function body

Description

This metric measures the number of executable lines in a function body. When
calculating the value of this metric, Polyspace excludes declarations without static
initializers, comments, blank lines, braces or preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 9. The calculation
excludes:

• The declaration int sign;.

9 Code Metrics

9-24

• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FXLN
HIS Metric: No

See Also
Number of Lines Within Body | Number of Instructions

 Number of Files

9-25

Number of Files
Number of source files

Description

This metric calculates the number of source files in your project.

Note: This metric is available only in the Polyspace Metrics web interface.

Metric Information
Group: Project
Acronym: FILES
HIS Metric: No

See Also
Number of Header Files

9 Code Metrics

9-26

Number of Function Parameters
Number of function arguments

Description
This metric measures the number of function arguments.

If ellipsis is used to denote variable number of arguments, when calculating this metric,
the ellipsis is not counted.

The recommended upper limit for this metric is 5. For less dependency between functions
and fewer side effects, try to enforce an upper limit on this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Function with Fixed Arguments

int initializeArray(int* arr, int size) {

}

In this example, initializeArray has two parameters.

Function with Type Definition in Arguments

int getValueInLoc(struct {int* arr; int size;}myArray, int loc) {

}

In this example, getValueInLoc has two parameters.

Function with Variable Arguments

double average (int num, ...)

 Number of Function Parameters

9-27

{

 va_list arg;

 double sum = 0;

 va_start (arg, num);

 for (int x = 0; x < num; x++)

 {

 sum += va_arg (arg, double);

 }

 va_end (arg);

 return sum / num;

}

In this example, average has one parameter. The ellipsis denoting variable number of
arguments is not counted.

Metric Information
Group: Function
Acronym: PARAM
HIS Metric: Yes

9 Code Metrics

9-28

Number of Goto Statements
Number of goto statements

Description

This metric measures the number of goto statements in a function.

break and continue statements are not counted.

The recommended upper limit on this metric is 0. For better readability of your code,
avoid goto statements in your code. To detect use of goto statements, check for
violations of MISRA C:2012 Rule 15.1.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Function with goto Statements

#define SIZE 10

int initialize(int **arr, int loc);

void printString(char *);

void printErrorMessage(void);

void printExecutionMessage(void);

int main()

{

 int *arrayOfStrings[SIZE],len[SIZE],i;

 for (i = 0; i < SIZE; i++)

 {

 len[i] = initialize(arrayOfStrings,i);

 }

 Number of Goto Statements

9-29

 for (i = 0; i < SIZE; i++)

 {

 if(len[i] == 0)

 goto emptyString;

 else

 goto nonEmptyString;

 loop: printExecutionMessage();

 }

emptyString:

 printErrorMessage();

 goto loop;

nonEmptyString:

 printString(arrayOfStrings[i]);

 goto loop;

}

In this example, the function main has 4 goto statements.

Metric Information
Group: Function
Acronym: GOTO
HIS Metric: Yes

9 Code Metrics

9-30

Number of Header Files
Number of header files

Description

This metric measures the number of header files in the project. Both directly and
indirectly included header files are counted. Polyspace internal header files and header
files included by those files are also counted.

Note: This metric is available only in the Polyspace Metrics interface.

Metric Information
Group: Project
Acronym: INCLUDES
HIS Metric: No

See Also
Number of Files

 Number of Instructions

9-31

Number of Instructions
Number of instructions per function

Description

This metric measures the number of instructions in a function body.

The recommended upper limit for this metric is 50. For more modular code, try to enforce
an upper limit for this metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Calculation of Number of Instructions

int func(int* arr, int size) {

 int i, countPos=0, countNeg=0, countZero = 0;

 for(i=0; i<size; i++) {

 if(arr[i] >0)

 countPos++;

 else if(arr[i] ==0)

 countZero++;

 else

 countNeg++;

 }

}

In this example, the number of instructions in func is 9. The instructions are:

1 countPos=0

2 countNeg=0

3 countZero=0

9 Code Metrics

9-32

4 for(i=0;i<size;i++) { ... }

5 if(arr[i] >=0)

6 countPos++

7 else if(arr[i]==0)

The ending else is counted as part of the if-else instruction.
8 countZero++

9 countNeg++

Note: This metric is different from the number of executable lines. For instance:

• for(i=0;i<size;i++) has 1 instruction and 1 executable line.

• The following code has 1 instruction but 3 executable lines.
for(i=0;

 i<size;

 i++)

Metric Information
Group: Function
Acronym: STMT
HIS Metric: Yes

 Number of Lines

9-33

Number of Lines
Total number of lines in a file

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace includes comments and blank lines.

Metric Information
Group: File
Acronym: TOTAL_LINES
HIS Metric: No

See Also
Number of Lines Without Comment

9 Code Metrics

9-34

Number of Lines Within Body
Number of lines in function body

Description

This metric calculates the number of lines in function body. When calculating the value
of this metric, Polyspace includes declarations, comments, blank lines, braces and
preprocessing directives.

If the function body contains a #include directive, the included file source code is also
calculated as part of this metric.

Examples

Function with Declarations, Braces and Comments

void func(int);

int getSign(int arg) {

 int sign;

 if(arg<0) {

 sign=-1;

 func(-arg);

 /* func takes positive arguments */

 }

 else if(arg==0)

 sign=0;

 else {

 sign=1;

 func(arg);

 }

 return sign;

}

In this example, the number of executable lines of getSign is 13. The calculation
includes:

• The declaration int sign;.

 Number of Lines Within Body

9-35

• The comment /* ... */.
• The two lines with braces only.

Metric Information
Group: Function
Acronym: FLIN
HIS Metric: No

See Also
Number of Executable Lines

9 Code Metrics

9-36

Number of Lines Without Comment
Number of lines of code excluding comments

Description

This metric calculates the number of lines in a file. When calculating the value of this
metric, Polyspace excludes comments and blank lines.

Metric Information
Group: File
Acronym: LINES_WITHOUT_CMT
HIS Metric: No

See Also
Number of Lines

 Number of Paths

9-37

Number of Paths
Estimated static path count

Description
This metric measures the number of paths through your source code.

If there are goto statements in your code, Polyspace cannot calculate the number of
paths. The software displays a metric value of -1.

The recommended upper limit for this metric is 80. If the number of paths is high, the
code is difficult to read and can cause more orange checks. Try to limit the value of this
metric.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Computation Details

The number of paths is calculated according to these rules:

• If the statements in a function do not break the control flow, the number of paths is
one.

Even an empty statement such as ; or empty block such as {} counts as one path.
• The number of paths for a control flow statement is calculated as follows:

• if-else if-else: The number of paths is the sum of paths calculated in the if
block, each else if block, and the concluding else block. When the concluding
else block is omitted, the path count is increased by 1.

For instance, the statement if(..) {} else if(..) {} else {} counts as
three paths. The statement if() {} counts as two paths, one for the if block and
one for the omitted else block.

• switch-case: Every case with break statement adds one to the path count. The
default statement counts as one path, even if it is omitted.

9 Code Metrics

9-38

For instance, the statement switch (var) { case 1: .. break; case
2: .. break; default: .. } counts as three paths.

• for, while, and do-while: The number of paths is equal to the number of paths
in the loop body + 1.

For instance, the statement while(0) {;} counts as two paths.
• If there is more than one control flow statement in a sequence, the number of paths is

the product of the path count for each control flow statement.

For instance, if a function has three for loops and two if-else statements, the
number of paths is 2 × 2 × 2 × 2 × 2 = 32.

If there are many control flow statements in a function, the number of paths can
be large. Nested control flow statements reduce the number of paths at the cost of
increasing the depth of nesting. For an example, see “Function with Nested Control
Flow Statements” on page 9-39.

Examples

Function with One Path

void func(int ch) {

 switch (ch)

 {

 case 1:

 case 2:

 case 3:

 case 4:

 default:

 }

}

In this example, func has one path.

Function with Control Flow Statement Causing Multiple Paths

void func(int ch) {

 switch (ch)

 Number of Paths

9-39

 {

 case 1:

 break;

 case 2:

 break;

 case 3:

 break;

 case 4:

 break;

 default:

 }

}

In this example, func has five paths. Apart from the path that goes through all the
cases and default, each break causes the creation of a new path.

Function with Nested Control Flow Statements

void func()

{

 int i = 0, j = 0, k = 0;

 for (i=0; i<10; i++)

 {

 for (j=0; j<10; j++)

 {

 for (k=0; k<10; k++)

 {

 if (i < 2)

 ;

 else

 {

 if (i > 5)

 ;

 else

 ;

 }

 }

 }

 }

}

In this example, func has six paths. The number is calculated as follows:

• The innermost if-else block counts as two paths.

9 Code Metrics

9-40

• The outer if-else block counts as three paths, one path for the if block and the
previous two paths for the else block.

• The innermost for loop counts as four paths, one path for the loop and the previous
three paths for the if-else blocks.

• The next two outer loops add one path each.

Therefore, the number of paths in func is six.

Metric Information
Group: Function
Acronym: PATH
HIS Metric: Yes

 Number of Protected Shared Variables

9-41

Number of Protected Shared Variables

Number of protected shared variables

Description

This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections

or temporal exclusions.

Note: This metric is available only in the Polyspace Metrics web interface. In the
Polyspace user interface, each protected shared variable is reported separately. For more
information, see Shared protected global variable.

Examples

Shared Variables Protected Through Temporal Exclusion

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

9 Code Metrics

9-42

 inc();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

}

void main() {

}

In this example, shared_var is a protected shared variable if you specify the following
options:

Option Value

Entry points task

interrupt_handler

Temporally exclusive
tasks

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task
and interrupt_handler are temporally exclusive, operations on the variable cannot
interrupt each other.

Shared Variables Protected Through Critical Sections

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

 Number of Protected Shared Variables

9-43

void reset() {

 shared_var = 0;

}

void take_semaphore(void);

void give_semaphore(void);

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 reset();

 inc();

 inc();

 give_semaphore();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 interrupt();

 give_semaphore();

 }

}

void main() {

}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value

Entry points task

interrupt_handler

Starting procedure Ending procedureCritical section details
take_semaphore give_semaphore

9 Code Metrics

9-44

The variable is shared between task and interrupt_handler. However, because
operations on the variable are between calls to the starting and ending procedure of the
same critical section, they cannot interrupt each other.

Metric Information
Group: Project
Acronym: PSHV
HIS Metric: No

See Also
“Entry points (C/C++)” on page 1-46 | “Critical section details (C/C++)” on page 1-48 |
“Temporally exclusive tasks (C/C++)” on page 1-50

 Number of Recursions

9-45

Number of Recursions
Number of call graph cycles over one or more functions

Description

This metric specifies the number of recursions in your project. Even if more than one
function is involved in one recursive cycle, the number of recursions is counted as one.

Calls through a function pointer are not considered.

The recommended upper limit for this metric is 0. To avoid the possibility of exceeding
available stack space, do not use recursions in your code. To detect use of recursions,
check for violations of MISRA C:2012 Rule 17.2.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Direct Recursion

int getVal(void);

void main() {

 int count = getVal(), total;

 assert(count > 0 && count <100);

 total = sum(count);

}

int sum(int val) {

 if(val<0)

 return 0;

 else

 return (val + sum(val-1));

9 Code Metrics

9-46

}

In this example, the number of recursions is 1.

A direct recursion is a recursion where a function calls itself in its own body. For direct
recursions, the number of recursions is equal to the number of recursive functions.

Indirect Recursion with One Call Graph Cycle

volatile int signal;

void operation1() {

 int stop = signal%2;

 if(!stop)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of recursions is 1. Although two functions operation1 and
operation2 indirectly call themselves, they are involved in the same call graph cycle
operation1 → operation2 → operation1.

An indirect function is a recursion where a function calls itself through other functions.
For indirect recursions, the number of recursions can be different from the number of
recursive functions.

Indirect Recursion with Two Call Graph Cycles

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation2();

 else if(stop==2)

 Number of Recursions

9-47

 operation3();

}

void operation2() {

 operation1();

}

void operation3() {

 operation3();

}

void main() {

 operation1();

}

In this example, the number of recursions is 2.

There are two call graph cycles:

• operation1 → operation2 → operation1
• operation1 → operation3 → operation1

Same Function Called in Direct and Indirect Recursion

volatile int signal;

void operation1() {

 int stop = signal%3;

 if(stop==1)

 operation1();

 else if(stop==2)

 operation2();

}

void operation2() {

 operation1();

}

void main() {

 operation1();

}

In this example, the number of call graph cycles is 1.

9 Code Metrics

9-48

If the same function calls itself both directly and indirectly, the two cycles are counted as
1.

Metric Information
Group: Project
Acronym: AP_CG_CYCLE
HIS Metric: Yes

 Number of Return Statements

9-49

Number of Return Statements
Number of return statements in a function

Description

This metric measures the number of return statements in a function.

The recommended upper limit for this metric is 1. If there is one return statement, when
reading the code, you can easily identify what the function returns.

To enforce limits on metrics:

• In the Polyspace user interface, see “Review Code Metrics”.
• In the Polyspace Metrics web interface, see “Compare Metrics Against Software

Quality Objectives”.

Examples

Function with Return Points

int getSign (int arg) {

 if(arg <0)

 return -1;

 else if(arg > 0)

 return 1;

 return 0;

}

In this example, getSign has 3 return statements.

Metric Information
Group: Function
Acronym: RETURN
HIS Metric: Yes

9 Code Metrics

9-50

Number of Unprotected Shared Variables
Number of unprotected shared variables

Description

This metric measures the number of variables with the following properties:

• The variable is used in more than one task.
• At least one operation on the variable is not protected from interruption by operations

in other tasks.

Note: This metric is available only in the Polyspace Metrics web interface. In the
Polyspace user interface, each unprotected shared variable is reported separately. For
more information, see Shared unprotected global variable.

Examples

Unprotected Shared Variables

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

 inc();

 Number of Unprotected Shared Variables

9-51

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

}

void main() {

}

In this example, shared_var is an unprotected shared variable if you specify task and
interrupt_handler as entry points and do not specify any protection mechanisms.

The operation shared_var = INT_MAX can interrupt the other operations on
shared_var and cause unpredictable behavior.

Metric Information
Group: Project
Acronym: UNPSHV
HIS Metric: No

10

Custom Coding Rules

10 Custom Coding Rules

10-2

Group 1: Files

Number Rule Applied Message generated if rule
is violated

Other details

1.1 All source file names
must follow the specified
pattern.

The source file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. A source file is a
file that is not included.

1.2 All source folder names
must follow the specified
pattern.

The source dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. A source file is a
file that is not included.

1.3 All include file names
must follow the specified
pattern.

The include file name
“file_name” does not
match the specified
pattern.

Only the base name is
checked. An include file
is a file that is included.

1.4 All include folder names
must follow the specified
pattern.

The include dir name
“dir_name” does not
match the specified
pattern.

Only the folder name is
checked. An include file
is a file that is included.

 Group 2: Preprocessing

10-3

Group 2: Preprocessing

Number Rule Applied Message generated if rule
is violated

Other details

2.1 All macros must follow
the specified pattern.

The macro
“macro_name” does
not match the specified
pattern.

Macro names are checked
before preprocessing.

2.2 All macro parameters
must follow the specified
pattern.

The macro parameter
“param_name” does
not match the specified
pattern.

Macro parameters
are checked before
preprocessing.

10 Custom Coding Rules

10-4

Group 3: Type definitions

Number Rule Applied Message generated if rule
is violated

Other details

3.1 All integer types must
follow the specified
pattern.

The integer type
“type_name” does not
match the specified
pattern.

Applies to integer types
specified by typedef
statements. Does not
apply to enumeration
types. For example:
typedef signed int

int32_t;

3.2 All float types must
follow the specified
pattern.

The float type
“type_name” does not
match the specified
pattern.

Applies to float types
specified by typedef
statements. For example:
typedef float

f32_t;

3.3 All pointer types must
follow the specified
pattern.

The pointer type
“type_name” does not
match the specified
pattern.

Applies to pointer types
specified by typedef
statements. For example:
typedef int* p_int;

3.4 All array types must
follow the specified
pattern.

The array type
“type_name” does not
match the specified
pattern.

Applies to array types
specified by typedef
statements. For example:
typedef int[3]

a_int_3;

3.5 All function pointer
types must follow the
specified pattern.

The function pointer
type “type_name” does
not match the specified
pattern.

Applies to function
pointer types specified
by typedef statements.
For example: typedef
void (*pf_callback)

(int);

 Group 4: Structures

10-5

Group 4: Structures

Number Rule Applied Message generated if rule
is violated

Other details

4.1 All struct tags must
follow the specified
pattern.

The struct tag
“tag_name” does not
match the specified
pattern.

4.2 All struct types must
follow the specified
pattern.

The struct type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

4.3 All struct fields must
follow the specified
pattern.

The struct field
“field_name” does not
match the specified
pattern.

4.4 All struct bit fields
must follow the specified
pattern.

The struct bit field
“field_name” does not
match the specified
pattern.

10 Custom Coding Rules

10-6

Group 5: Classes (C++)

Number Rule Applied Message generated if rule
is violated

Other details

5.1 All class names must
follow the specified
pattern.

The class tag
“tag_name” does not
match the specified
pattern.

5.2 All class types must
follow the specified
pattern.

The class type
“type_name” does not
match the specified
pattern.

This is the typedef
name.

5.3 All data members must
follow the specified
pattern.

The data member
“member_name” does
not match the specified
pattern.

5.4 All function members
must follow the specified
pattern.

The function member
“member_name” does
not match the specified
pattern.

5.5 All static data members
must follow the specified
pattern.

The static data member
“member_name” does
not match the specified
pattern.

5.6 All static function
members must follow
the specified pattern.

The static
function member
“member_name” does
not match the specified
pattern.

5.7 All bitfield members
must follow the specified
pattern.

The bitfield
“member_name” does
not match the specified
pattern.

 Group 6: Enumerations

10-7

Group 6: Enumerations

Number Rule Applied Message generated if rule
is violated

Other details

6.1 All enumeration tags
must follow the specified
pattern.

The enumeration tag
“tag_name” does not
match the specified
pattern.

6.2 All enumeration types
must follow the specified
pattern.

The enumeration type
“type_name” does not
match the specified
pattern.

This is the typedef name.

6.3 All enumeration
constants must follow
the specified pattern.

The enumeration
constant
“constant_name” does
not match the specified
pattern.

10 Custom Coding Rules

10-8

Group 7: Functions

Number Rule Applied Message generated if rule
is violated

Other details

7.1 All global functions
must follow the specified
pattern.

The global function
“function_name” does
not match the specified
pattern.

A global function is a
function with external
linkage.

7.2 All static functions must
follow the specified
pattern.

The static function
“function_name” does
not match the specified
pattern.

A static function is a
function with internal
linkage.

7.3 All function parameters
must follow the specified
pattern.

The function parameter
“param_name” does
not match the specified
pattern.

In C++, applies to non-
member functions.

 Group 8: Constants

10-9

Group 8: Constants

Number Rule Applied Message generated if rule
is violated

Other details

8.1 All global constants
must follow the specified
pattern.

The global constant
“constant_name” does
not match the specified
pattern.

A global constant is a
constant with external
linkage.

8.2 All static constants
must follow the specified
pattern.

The static constant
“constant_name” does
not match the specified
pattern.

A static constant is a
constant with internal
linkage.

8.3 All local constants must
follow the specified
pattern.

The local constant
“constant_name” does
not match the specified
pattern.

A local constant is a
constant without linkage.

8.4 All static local constants
must follow the specified
pattern.

The static local constant
“constant_name” does
not match the specified
pattern.

A static local constant is
a constant declared static
in a function.

10 Custom Coding Rules

10-10

Group 9: Variables

Number Rule Applied Message generated if rule
is violated

Other details

9.1 All global variables
must follow the specified
pattern.

The global variable
“var_name” does not
match the specified
pattern.

A global variable is a
variable with external
linkage.

9.2 All static variables must
follow the specified
pattern.

The static variable
“var_name” does not
match the specified
pattern.

A static variable is a
variable with internal
linkage.

9.3 All local variables must
follow the specified
pattern.

The local variable
“var_name” does not
match the specified
pattern.

A local variable is a
variable without linkage.

9.4 All static local variables
must follow the specified
pattern.

The static local variable
“var_name” does not
match the specified
pattern.

A static local variable is
a variable declared static
in a function.

 Group 10: Name spaces (C++)

10-11

Group 10: Name spaces (C++)

Number Rule Applied Message generated if rule
is violated

Other details

10.1 All names paces must
follow the specified
pattern.

The name space “name
space_name” does not
match the specified
pattern.

10 Custom Coding Rules

10-12

Group 11: Class templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

11.1 All class templates must
follow the specified
pattern.

The class template
“template_name” does
not match the specified
pattern.

11.2 All class template
parameters must follow
the specified pattern.

The class template
parameter
“param_name” does
not match the specified
pattern.

 Group 12: Function templates (C++)

10-13

Group 12: Function templates (C++)

Number Rule Applied Message generated if rule
is violated

Other details

12.1 All function templates
must follow the specified
pattern.

The function template
“template_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.2 All function template
parameters must follow
the specified pattern.

The function
template parameter
“param_name” does
not match the specified
pattern.

Applies to non-member
functions.

12.3 All function template
members must follow
the specified pattern.

The function
template member
“member_name” does
not match the specified
pattern.

11

Global Variables

11 Global Variables

11-2

Shared protected global variable
Global variables shared between multiple tasks and protected from concurrent access by
the tasks

Description
A shared protected global variable has the following properties:

• The variable is used in more than one task.
• All operations on the variable are protected from interruption through critical sections

or temporal exclusion. The calls to functions beginning and ending a critical section
must be reachable.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored green on the Source, Results
Summary and Variable Access panes. On the Source pane, the coloring is applied to
the variable only during declaration.

Examples

Shared Variables Protected Through Temporal Exclusion

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

 Shared protected global variable

11-3

 inc();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

}

void main() {

}

In this example, shared_var is a protected shared variable if you specify the following
multitasking options:

Option Value

“Verify whole application
(C/C++)” on page 1-69
“Configure multitasking
manually (C/C++)” on page
1-44
“Entry points (C/C++)” on
page 1-46

task

interrupt_handler

“Temporally exclusive tasks
(C/C++)” on page 1-50

task interrupt_handler

The variable is shared between task and interrupt_handler. However, because task
and interrupt_handler are temporally exclusive, operations on the variable cannot
interrupt each other.

Shared Variables Protected Through Critical Sections

#include <limits.h>

int shared_var;

11 Global Variables

11-4

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void take_semaphore(void);

void give_semaphore(void);

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 reset();

 inc();

 inc();

 give_semaphore();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 take_semaphore();

 interrupt();

 give_semaphore();

 }

}

void main() {

}

In this example, shared_var is a protected shared variable if you specify the following:

Option Value

“Verify whole application
(C/C++)” on page 1-69

 Shared protected global variable

11-5

Option Value

“Configure multitasking
manually (C/C++)” on page
1-44
“Entry points (C/C++)” on
page 1-46

task

interrupt_handler

Starting procedure Ending procedure“Critical section details (C/C
++)” on page 1-48 take_semaphore give_semaphore

The variable is shared between task and interrupt_handler. However, because
operations on the variable are between calls to the starting and ending procedure of the
same critical section, they cannot interrupt each other.

Shared Structure Variables Protected Through Access Pattern

struct S {

 unsigned int var_1;

 unsigned int var_2;

};

volatile int randomVal;

struct S sharedStruct;

void task1(void) {

 while(randomVal)

 operation1();

}

void task2(void) {

 while(randomVal)

 operation2();

}

void operation1(void) {

 sharedStruct.var_1++;

}

void operation2(void) {

 sharedStruct.var_2++;

11 Global Variables

11-6

}

int main(void) {

 return 0;

}

In this example, if you specify task1 and task2 for the Entry points option and do
not specify a protection mechanism, the software determines that sharedStruct is a
protected, shared variable. sharedStruct is protected because

• task1 operates only on sharedStruct.var_1.
• task2 operates only on sharedStruct.var_2.

If you select the result, the Result Details pane indicates that the access pattern
protects all operations on the variable. On the Variable Access pane, the row for
variable sharedStruct lists Access pattern as the protection type.

Shared Variables Protected Through Design Pattern and Mutex

#include <pthread.h>

#include <stdlib.h>

pthread_mutex_t lock;

pthread_t id1, id2;

int var;

void * t1(void* b) {

 pthread_mutex_lock(&lock);

 var++;

 pthread_mutex_unlock(&lock);

}

void * t2(void* a) {

 pthread_mutex_lock(&lock);

 var = 1;

 pthread_mutex_unlock(&lock);

}

int main(void) {

 pthread_create(&id1, NULL, t1, NULL);

 pthread_create(&id2, NULL, t2, NULL);

 Shared protected global variable

11-7

 return 0;

}

Option Name Value

“Enable automatic concurrency detection (C/C++)” on
page 1-41

On

In this example, if you specify the concurrency detection option, Polyspace Code
Prover detects that your program uses multitasking. Two task, lock and var, share
two variables. lock is a pthread mutex variable, which pthread_mutex_lock and
pthread_mutex_unlock use to lock and unlock their mutexes. The inherent pthread
design patterns protect lock. The Results Details pane and Variable Access pane list
Design Pattern as the protection type.

The mutex locking and unlocking mechanisms protect var, the other shared variable.
The Results Details pane and Variable Access pane list Mutex as the protection type.

Check Information
Language: C | C++

See Also

Polyspace Analysis Options
“Entry points (C/C++)” on page 1-46 | “Critical section details (C/C++)” on page 1-48 |
“Temporally exclusive tasks (C/C++)” on page 1-50

Polyspace Results
Shared unprotected global variable | Non-shared used global variable | Non-shared
unused global variable

More About
• “Multitasking”

11 Global Variables

11-8

Shared unprotected global variable
Global variables shared between multiple tasks but not protected from concurrent access
by the tasks

Description

A shared unprotected global variable has the following properties:

• The variable is used in more than one task.
• Polyspace determines that at least one operation on the variable is not protected from

interruption by operations in other tasks.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored orange on the Source, Results
Summary and Variable Access panes. On the Source pane, the coloring is applied to
the variable only during declaration.

Examples

Unprotected Shared Variables

#include <limits.h>

int shared_var;

void inc() {

 shared_var+=2;

}

void reset() {

 shared_var = 0;

}

void task() {

 volatile int randomValue = 0;

 while(randomValue) {

 reset();

 inc();

 Shared unprotected global variable

11-9

 inc();

 }

}

void interrupt() {

 shared_var = INT_MAX;

}

void interrupt_handler() {

 volatile int randomValue = 0;

 while(randomValue) {

 interrupt();

 }

}

void main() {

}

In this example, shared_var is an unprotected shared variable if you specify task and
interrupt_handler for the option “Entry points (C/C++)” on page 1-46 and do not
specify any protection mechanisms.

The operation shared_var = INT_MAX can interrupt the other operations on
shared_var and cause unpredictable behavior.

Check Information
Language: C | C++

See Also

Polyspace Analysis Options
“Entry points (C/C++)” on page 1-46 | “Critical section details (C/C++)” on page 1-48 |
“Temporally exclusive tasks (C/C++)” on page 1-50

Polyspace Results
Shared protected global variable | Non-shared used global variable | Non-shared unused
global variable

More About
• “Multitasking”

11 Global Variables

11-10

Non-shared used global variable

Global variables used in a single task

Description

A non-shared used global variable has the following properties:

• The variable is used only in a single task.
• Polyspace detects at least one read or write operation on the variable.

In code that is not intended for multitasking, all global variables are non-shared.

In your verification results, these variables are colored black on the Results Summary
and Variable Access panes.

Examples

Used and Unused Global Variables

int var1;

int var2;

int var3;

int var4;

int input(void);

void main() {

 int loc_var = input(), flag=0;

 var1 = loc_var;

 if(0) {

 var3 = loc_var;

 }

 if(flag!=0) {

 var4 =loc_var;

 }

 Non-shared used global variable

11-11

}

If you verify the above code in a C project, the software lists var2, var3 and var4 as
non-shared unused variables, and var1 as a non-shared used variable.

var3 and var4 are used in unreachable code and are therefore marked as unused.

Note: In a C++ project, the software does not list the unused variable var2.

Non-shared variables in multitasking code

unsigned int var_1;

unsigned int var_2;

volatile int randomVal;

void task1(void) {

 while(randomVal)

 operation(1);

}

void task2(void) {

 while(randomVal)

 operation(2);

}

void operation(int i) {

 if(i==1) {

 var_1++;

 }

 else {

 var_2++;

 }

}

int main(void) {

 return 0;

}

In this example, even when you specify task1 and task2 for the option “Entry points (C/
C++)” on page 1-46, the software determines that var_1 and var_2 are non-shared.

11 Global Variables

11-12

Even though both task1 and task2 call the function operation, because of the if
statement in operation, task1 can operate only on var_1 and task2 only on var_2.

Check Information
Language: C | C++

See Also
Shared protected global variable | Shared unprotected global variable | Non-shared
unused global variable

 Non-shared unused global variable

11-13

Non-shared unused global variable
Global variables declared but not used

Description

A non-shared unused global variable has the following properties:

• The variable is declared in the code.
• Polyspace cannot detect a read or write operation on the variable.

In your verification results, these variables are colored gray on the Source, Results
Summary and Variable Access panes. On the Source pane, the coloring is applied to
the variable only during declaration.

Note: The software does not display a complete list of unused global variables.
Especially, in C++ projects, unused global variables can be suppressed from display.

Examples

Used and Unused Global Variables

int var1;

int var2;

int var3;

int var4;

int input(void);

void main() {

 int loc_var = input(), flag=0;

 var1 = loc_var;

 if(0) {

 var3 = loc_var;

 }

 if(flag!=0) {

11 Global Variables

11-14

 var4 =loc_var;

 }

}

If you verify the above code in a C project, the software lists var2, var3 and var4 as
non-shared unused variables, and var1 as a non-shared used variable.

var3 and var4 are used in unreachable code and are therefore marked as unused.

Note: In a C++ project, the software does not list the unused variable var2.

Check Information
Language: C | C++

See Also
Shared protected global variable | Shared unprotected global variable | Non-shared used
global variable

